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Abstract
Extremely skewed label distributions are com-
mon in real-world node classification tasks. If
not dealt with appropriately, it significantly hurts
the performance of GNNs in minority classes.
Due to its practical importance, there have been
a series of recent research devoted to this chal-
lenge. Existing over-sampling techniques smooth
the label distribution by generating “fake” mi-
nority nodes and synthesizing their features and
local topology, which largely ignore the rich in-
formation of unlabeled nodes on graphs. In this
paper, we propose UNREAL, an iterative over-
sampling method. The first key difference is that
we only add unlabeled nodes instead of synthetic
nodes, which eliminates the challenge of feature
and neighborhood generation. To select which
unlabeled nodes to add, we propose geometric
ranking to rank unlabeled nodes. Geometric rank-
ing exploits unsupervised learning in the node
embedding space to effectively calibrates pseudo-
label assignment. Finally, we identify the issue
of geometric imbalance in the embedding space
and provide a simple metric to filter out geomet-
rically imbalanced nodes. Extensive experiments
on real-world benchmark datasets are conducted,
and the empirical results show that our method
significantly outperforms current state-of-the-art
methods consistent on different datasets with dif-
ferent imbalance ratios.

1. Introduction
Node classification is ubiquitous in real-world scenarios e.g.,
social network and commercial graph analysis. Generally,
real-world data come with an imbalanced class distribu-
tion (Mohammadrezaei et al., 2018; Wang et al., 2020b). A
classifier trained using an imbalanced dataset is prone to

1Fudan University, Shanghai, China 2Huawei Technologies
Co., Ltd Shengzhen, China. Correspondence to: Zengfeng Huang
<huangzf@fudan.edu.cn>.

have biased accuracy on under-represented classes. While
GNNs have achieved superior performance on node clas-
sification, training a fair GNN model for handling highly-
imbalanced class distributions remains a challenging task
(Liu et al., 2018; Zhao et al., 2021).

Several recent studies have been devoted to solving the im-
balanced node classification problem (Zhao et al., 2021; Shi
et al., 2020; Chen et al., 2021; Park et al., 2021; Song et al.,
2022). One strategy is to adapt over-sampling, a widely
used technique in other domains, to graph data. However,
it is a non-trivial task, since one needs to additionally gen-
erate topological information for newly synthesized nodes.
Different approaches to synthesize new nodes together with
their feature and relational information have been proposed,
e.g., (Zhao et al., 2021; Shi et al., 2020; Park et al., 2021).
Adding synthetic data introduces additional noise (which
harms classification accuracy) and extra computation bur-
den, especially in graph learning. On the other hand, abun-
dant unlabeled nodes are often available in large-scale graph
learning tasks. Can we just add unlabeled nodes instead
of synthesizing a large amount of “fake” nodes? Thus far,
the value of unlabeled nodes in imbalanced semi-supervised
classification has not been explored.

In this work, we propose a novel imbalanced node clas-
sification method: unlabeled node retrieval and labeling
(UNREAL). At a high level, UNREAL is an oversampling
approach similar to self-training (ST) (Yarowsky, 1995; Lee
et al., 2013), which adds unlabeled nodes together with
their pseudo-labels (predictions made by a previous-learned
model) to the training set. Since there is no need for syn-
thesizing node features and topology, it overcomes critical
shortcomings of existing oversampling approaches.

It is noteworthy that ST has shown to be effective in dealing
with label sparsity in node classification (Li et al., 2018;
Zhou et al., 2019; Sun et al., 2020; Wang et al., 2021c).
Extensive experiments in this work show that ST is effective
for imbalanced learning as well but fails to achieve satisfac-
tory performance in heavily-imbalanced scenarios. This is
mainly because the bias in the original training set results in
unreliable predictions, which makes the pseudo-labels used
in ST highly noisy. In this paper, we introduce effective
techniques to overcome the initial bias in ST to further boost
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the performance on heavily-imbalanced node classification.
The key idea is to explore the geometric structure in the
embedding space to calibrate the bias in pseudo-labels.

This is partially inspired by the work of (Kang et al., 2019)
from computer vision, where they hypothesize and verify
empirically that the classifier is the only under-performed
component in the model when trained on an imbalanced
training set. In UNREAL, after the preliminary training step
in ST, we retrieve node embeddings from the output layer
(before the classification layer) and use unsupervised cluster-
ing methods for label prediction, which compensate for the
prediction made by the supervised model. As in (Chen et al.,
2021), we wish to add nodes that are closer to their class
centers, and unsupervised learning in the embedding space
also provides a natural way to rank the closeness of nodes to
their (predicted) class centers. As in standard ST, multiple
rounds of pseudo-label fitting will be applied. Extensive
experimental studies show that our framework outperforms
existing imbalanced node classification methods by a large
margin in most settings.

We summarize our contribution as follows: 1) As far as
we know, this is the first work that systematically studies
the performance of ST as an over-sampling technique for
imbalanced node classification; 2) from our empirical re-
sults, we identify deficiencies of ST in heavily-imbalanced
scenarios, and propose to apply unsupervised methods in
the embedding space to overcome the drawbacks; 3) we
introduce several simple yet effective techniques in the im-
plementation to optimize the performance, e.g., we identify
the Geometric Imbalance (GI) issue in the embedding space
and propose a metric to measure GI and discard imbalanced
nodes; 4) we conduct comprehensive experiments on multi-
ple benchmarks which demonstrates the superiority of our
framework.

2. Preliminaries
2.1. Notations and Definitions

In this work, we mainly focus on semi-supervised node
classification on an undirected and unweighted graph G =
(V, E ,L). Here, V is the node set, E is the edge set, and
L ⊂ V denotes the set of labeled nodes. So the set of
unlabeled nodes is U = V−L. LetX ∈ Rn×f be the feature
matrix (where n = |V| and f is the feature dimension). We
use A ∈ {0, 1}n×n to denote the adjacency matrix and
N (v) the set of 1-hop neighbors of node v. The labeled
sets for all classes are denoted by (C1, C2, · · · , Ck), where k
is the number of different classes. We use imbalance ratio,
defined as ρ := maxi(|Ci|)

mini(|Ci|) , to measure the level of imbalance
in a dataset. We summarize the notation in Appendix F.

2.2. Message Passing Neural Networks for Node
Classification

A standard MPNN consists of three components, a message
function ml, an information aggregation function θl, and a
node feature update function ψl. The feature of each node
is updated iteratively. Let hlv be the feature of node v in the
l-th layer, then in the (l + 1)-th layer the feature is:

h(l+1)
v = ψl

(
h(l)v , θl

({
ml

(
h(l)v , h

(l)
u , ev,u

)
| u ∈ N (v)

}))
(1)

where ev,u is the edge weight between v and u. For
the classic GCN model (Kipf & Welling, 2016), h(l+1)

v

is computed as: h
(l+1)
v = Φl

∑
u∈N (v)∪{v}

ev,u√
d̂ud̂v

h
(l)
u ,

where Φl is the parameter matrix of the l-th layer and
d̂v = 1 +

∑
u∈N (v) ev,u. For node classification, a clas-

sification layer is concatenated after the last layer of a GNN.

3. Imbalanced Learning with Unlabeled Data
In this work, we try to harness the positive value of un-
labeled nodes for imbalance learning. We first conduct
extensive experiments to confirm the effectiveness of ST
in boosting imbalanced learning on graph-structured data.
Our experimental results show that as the imbalance ratio in-
crease, standard ST is more likely to add nodes with wrong
pseudo-labels, which leads to performance degradation.

3.1. ST Improves the Performance of GNN in
Imbalanced Learning

Yang & Xu (2020) considered a binary classification prob-
lem with the data generating distribution is a mixture of two
Gaussians and assumed that a base classifier is trained on
imbalanced data. Their analysis of this simple model shows:
(1) ST boosts imbalanced learning and more unlabeled data
is always helpful. (2) data imbalance affects the probability
of obtaining a good estimation. Graph learning is more com-
plicated and such a simple model could miss some critical
aspects of graph learning.

We first conduct extensive experiments to confirm the effec-
tiveness of ST in boosting imbalanced learning on graph-
structured data. We repeat each experiment five times and
report the average experiment results on Cora under differ-
ent imbalance ratios in Figure 1(a).1 It can be observed that
across different ratios, ST consistently outperforms vanilla
model by a large margin, which verifies the positive value
of the unlabeled samples of graph-structured data. How-
ever, as imbalance ratio increases, it is observed that the
performance of ST degrades rapidly, which renders that ST
is insufficient for high imbalance ratios. It can be observed

1More results on different datasets and models can be found in
Appendix A.
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that UNREAL consistently outperforms ST by a large mar-
gin, and as imbalance ratio increases, the gap of the F1
scores between ST and our method becomes larger. We
believe the main reason is that, due to imbalance in the orig-
inal training, ST adds low-quality nodes into the training set
in the early stages. We conduct experiments to verify this in
Section 3.2.

3.2. Pseudo-label Misjudgment Augmentation Problem
in Imbalanced Learning

As we mentioned, since ST adds pseudo-labels to the train-
ing set and trains the model iteratively, misjudgements in
the early stages will cause the method to fail badly. Here,
we hypothesize that as the imbalance ratio of the dataset
becomes larger, the pseudo-labels obtained by ST-based
methods are less credible.

Experimental Setup. We first conduct experiments to test
the accuracy of pseudo-label for unlabeled nodes on class-
imbalanced graphs. ST based on GCN are trained on Cora.
We process the dataset to make it imbalanced following
Zhao et al. (2021); Park et al. (2021); Song et al. (2022).
The imbalance ratio ρ is set as 1, 5, 10, 20, 50, 100. We test
the accuracy of pseudo-labels for unlabeled nodes which are
newly added to the training set. More specifically, we ex-
amine 100 nodes that join the majority class and 100 nodes
that join the minority class. We repeat each experiment five
times and report the average experiment results.

Pseudo-label Misjudgment Augmentation Problem.
The accuracy of pseudo-labels for unlabeled nodes which
are selected into the minority class and the majority class are
reported in Figure 1(b).2 We can observe that as ρ becomes
larger, the accuracy of pseudo labels for unlabeled nodes
selected into the minority class decreases quickly. For un-
labeled nodes selected into the majority class, the accuracy
of pseudo-labels is stable at a high level, which confirms
the heavy bias of the base classifier trained on highly im-
balanced data. As a reference, for both majority class or
minority class, UNREAL consistently outperforms ST in
pseudo-label accuracy.

3.3. More Elaboration and Experiments.

In Appendix A, we provide more experimental details and
more experimental results on different benchmarks and base
models to strengthen our finds in Section 3.1 and Section
3.2.

2More results on different datasets and models can be found in
Appendix A.
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Figure 1. (a) The experimental results on Cora under different
imbalance scenarios (ρ = 10, 20, 50, 100). We compare the F1-
score (%) with the standard errors of ST and UNREAL. (b) The
experimental results on Cora under various imbalance scenarios are
presented. We choose 100 unlabeled nodes that have recently been
added to the training set using ST & UNREAL, and we evaluate
their performance using GCN by comparing their accuracy (%)
with the standard errors of these nodes’ pseudo labels. Minor
means that we only test unlabeled nodes from the minority classes,
and Major means that we only test unlabeled nodes from the
majority classes.

4. UNREAL
In this section, we provide the details of the proposed
method. UNREAL iteratively adds unlabeled nodes (with
predicted labels) to the training set and retrains the model.
We propose three complementary techniques to enhance the
unlabeled node selection and labeling. More specifically, in
Section 4.1, we describe Dual Pseudo-tag Alignment Mech-
anism (DPAM) for effective node filtering, the key idea of
which is to use unsupervised clustering in the embedding
space to obtain a node ranking, namely geometric ranking.
In Section 4.2, we show how to combine geometric rank
from unsupervised learning and confidence ranking from
supervised learning to reorder unlabeled nodes according
to their closeness to the class centers (Node-Reordering).
Finally, in Section 4.3, we identify the issue of geometric
node imbalance (GI) and define a new metric to measure
GI, which is then used to filter out nodes with high GI. The
overall pipeline of UNREAL is illustrated in Figure 2. The
pseudo-code of the full algorithm is provided in Appendix
E (Algorithm 1).

4.1. Dual Pseudo-tag Alignment Mechanism for Node
Filtering

Motivating Example. As we verified above, in heavily-
imbalanced scenarios, the pseudo-labels given by the classi-
fier are much less reliable. Kang et al. (2019) hypothesize
and verify empirically that the classifier is the only under-
performed component in the model when trained on an
imbalanced training set. We conduct experiments to verify
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Figure 2. Overall pipeline of our UNREAL. Colored nodes denote
labeled nodes. Parameters in the GNN Model and the classifier are
trained together using the current training set.

this on imbalanced node classification.

Let d be the embedding dimension. We use HL ∈ R|L|×d
and HU ∈ R|U|×d to denote the embedding matrix of la-
beled and unlabeled nodes respectively. Each row of the em-
bedding matrix is the embedding of a node u (denoted as hLu
and hUu ), which is considered as a point in the d-dimension
Euclidean space. We apply an unsupervised clustering algo-
rithm, fcluster, which partitions the embeddings of unlabeled
nodes into k′ clusters and produces k′ corresponding cluster
centers, where k′ is usually larger than k, the number of
classes.

fcluster(H
U ) =⇒ {K1, c1,K2, c2, · · · ,Kk′ , ck′} (2)

where Ki is the i-th cluster and ci is the i-th cluster center.
We use vanilla k-means in our implementation. We also
compute the embedding center of each class in the training
set

ctrain
i = M({hLu | yu ∈ Ci}). (3)

Since we use k-means in our experiments, M(·) is simply
the mean function. We next assign a pseudo-label ỹm to
each cluster Km:

ỹi = arg min
j

distance(ctrain
j , ci). (4)

We then combine clusters with the same pseudo-label m as
Ũm, and U =

⋃k
m=1 Ũm. On the other hand, the supervised

GNN model gives each node u in U a prediction ŷu, and we
put unlabeled nodes whose prediction is m into the set Um,
and again we have U =

⋃k
m=1 Um.

Analysis. Thus far, we obtain two pseudo-labels for each
unlabeled node, which come from unsupervised and super-
vised methods respectively. We conduct experiments on

Cora to compare the accuracy of the two pseudo-labels. The
experiment settings are the same as Section 3.2. As shown
in Figure 3(a) and Figure 3(b), it can be found that the
embeddings learned by the GNN encoder are still of high
quality to get an effective prediction based on unsupervised
algorithms. Especially in heavily-imbalanced scenarios, the
reliability of unsupervised algorithms is even higher than
the supervised classifier. Based on this, we proposed DPAM.
3

0 20 40 60 80 100
Imbalance Ratio

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

Unsupervised
Supervised

(a) Cora-GCN

0 20 40 60 80 100
Imbalance Ratio

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

UnSupervised
Supervised

(b) Cora-GAT

1 2 3 4 5 6 7 8
Round

0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

RB
O 

Va
lu

e

Class1(Major)
Class7(Minor)

(c) Cora-GCN

1 2 3 4 5 6 7 8
Round

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RB
O 

Va
lu

e

Class1(Major)
Class7(Minor)

(d) Cora-GAT

Figure 3. (a, b) The partial experimental results on Cora under
different imbalance scenarios(ρ = 1, 5, 10, 20, 50, 100). We
compare the accuracy of the two pseudo-labels(predictions) from
unsupervised algorithms and supervised classifiers respectively for
all unlabeled nodes. (c, d) Fluctuation of RBO values (similarity)
of two rankings as iterations progress.

Dual Pseudo-tag Alignment Mechanism (DPAM). The
pseudo-labels produced by applying an unsupervised algo-
rithm on the embeddings provide an alternative and poten-
tially less biased prediction, which may compensate for
the bias introduced by the imbalanced training set. At the
same time, the overall accuracy of the unsupervised algo-
rithm is inferior to supervised methods when the training
set gradually becomes balanced, and thus it is sub-optimal
to rely solely on the pseudo-labels from clustering. As a

3We elaborate on the experimental details and conduct more
experiments to validate our idea and the effectiveness of DPAM in
Appendix C.1 and Appendix C.2.
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result, DPAM only keeps unlabeled nodes whose two labels
align, i.e., those belong to the intersection of Ũm and Um for
each m ∈ {1, 2, · · · , k}; and each node in Ũm ∩ Um gets a
pseudo-label m.

4.2. Node-Reordering

Now DPAM has selected a pool of candidate nodes:

Z =
k⋃

i=m

(Ũm ∩ Um). In this section, we present Node-

Reordering, a method that re-orders nodes in Z according
to the closeness of each node to its class center. Node-
Reordering combines the geometric rankings from the un-
supervised method and confidence rankings from model
prediction. We first give the definitions of two rankings.

Definition 4.1. (Geometric Rankings.) Suppose u ∈
Ũm ∩ Um, and let hUu be the embedding of u. We mea-
sure the distance between node u and its class center by

δu = distance (hUu , c
train
m ) (5)

where ctrain
m is the class center of class m (see (3)). For each

class m, we sort nodes in Ũm ∩ Um in the increasing order
of their distance to the class center, so we obtain k sorted
lists {S1,S2, · · · ,Sk}, which we call geometric rankings.

Definition 4.2. (Confidence Rankings.) For each node
u ∈ Ũm ∩Um, we can get a classification confidence for the
node from the output of the classifier as follow:

confidence = max (softmax (logits)), (6)

Here, logits is the output of the neural network, usually
a k (number of classes) dimensional vector. The pseudo-
labels of u from the classifier are the index of the class with
the highest prediction probability and the corresponding
probability is its confidence. We sort nodes in Ũm ∩ Um in
the decreasing order of their confidence, and obtain another
k sorted lists {T1, T2, · · · , Tk}, which we call confidence
rankings.

Rank Biased Overlap. In the fields of information re-
trieval and recommendation systems, a fundamental task
is to measure the similarity between two rankings. Rank
Biased Overlap (RBO) (Webber et al., 2010) compares two
ordered lists and returns a numeric value between zero and
one to quantify their similarity. An RBO value of zero indi-
cates the lists are completely different, and an RBO of one
means completely identical.

Node-Reordering. Section 3.2 has verified that the pre-
diction results of unlabeled nodes given by the bias classifier
are not reliable, and Section 4.1 has verified the high-quality
of the embeddings. This means that the confidence rank-
ings in early rounds are less unreliable than the geometric
rankings.

For each class m, we calculate the RBO value between
Sm and Tm and then use the RBO score as a weight and
get the weighted combination of the two rankings. More
specifically, we first compute rm = RBO(Sm, Tm), and
then compute

NNew
m = max{rm, 1− rm} ·Sm+min{rm, 1− rm} ·Tm,

(7)
We then select nodes according to the new ranking based on
values in NNew

m . Note that we always make the geometric
rankings have the dominating influence in this step.

A natural question is why not filter nodes based solely on
geometric rankings. UNREAL selects new nodes iteratively
for multiple rounds, and as iterations progress, the training
set becomes more and more balanced. So in the later stages,
the confidence rankings given by the classifier are valuable.
The effectiveness of Node-Reordering is empirically verified
in Appendix C.4. At the same time, our experiments also
show that as iterations progress, the RBO value (similarity)
of the two rankings increases (Figure 3(c) and Figure 3(d)).

4.3. Geometric Imbalance

In this section, we consider the issue of Geometric Imbal-
ance (GI) in the embedding space and define a simple and
effective metric to measure GI.

Geometric Imbalance. In highly imbalanced scenarios,
minority nodes often suffer from topology imbalance (Song
et al., 2022; Chen et al., 2021), which means the labeled
node stays near the boundary between a minority class and
a majority class. The geometric ranking and DPAM intro-
duced above partially alleviate this issue. However, when
the class centers of two classes are very close in the em-
bedding space, the problem may still exist. Consider two
nodes u and v which belong to class 1 and 2 respectively.
When the centers of class 1 and 2 are very close and v is on
their boundary in the embedding space, u, v are likely both
assigned with pseudo-label 1 and v has a higher geometric
ranking than u w.r.t. class 1. We refer to this issue as the
geometric imbalance in the embedding space.

Discarding Geometrically Imbalanced Nodes (DGIN).
Intuitively, if a node is very close to the centers of more
than one class simultaneously, it should not be selected as
there is high uncertainty in the pseudo-label. Therefore, we
define a simple and natural metric to measure the degree
of GI. According to (5), δu refers to the distance between
the embedding of u and the center of the class to which u
is assigned (i.e., the closest class center among all classes).
Similarly, we define βu as the distance between the em-
bedding of u and the second closest center to u. We have
δu ≤ βu for all u, and intuitively, if δu ≈ βu, then u is
likely to have high degree of GI. We thus define the metric
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for measuring GI as

GIu =
βu − δu
δu

. (8)

We refer to the metric as the GI index. The GI issue is more
serious on the node with a smaller GI index. So we set a
threshold and discard all nodes with GI index below the
threshold.

The effectiveness of DGIN is empirically verified in Ap-
pendix C.5.

4.4. Selecting New Nodes Iteratively

As in standard ST, we select nodes to join the training set
in several rounds, and in each round, we retrain the model
using the newly formed training set. In highly-imbalanced
cases, we only add nodes from minority classes. In this
way, the label distribution of the training set is gradually
smoothed, and the imbalance issue is alleviated.

5. Experiment
5.1. Experimental Setups

Datasets. We validate the advantages of our method on
five benchmark datasets under different imbalance scenarios,
in which the step imbalance scheme given in (Zhao et al.,
2021; Park et al., 2021; Song et al., 2022) is adopted to
construct class imbalanced datasets. More specifically, we
choose half of the classes as minority classes and convert
randomly picked labeled nodes into unlabeled ones until
the imbalance ratio of the training set reaches ρ. For Flickr,
in the public split, the training set is already imbalanced,
and thus we directly use this split and do not make any
changes. For the three citation networks (Cora, CiteSeer,
Pubmed), we use the standard splits from Yang et al. (2016)
as our initial splits when the imbalance ratio is 10, 20. To

create a larger imbalance ratio, 20 labeled nodes per class
is not enough, and we use a random split as the initial
split for creating an imbalance ratio of 50 and 100. The
detailed experimental settings such as evaluation protocol
and implementation details of our algorithm are described
in Appendix D.

Baselines. We compare UNREAL with several classic
techniques (cross-entropy loss with re-weighting (Japkow-
icz & Stephen, 2002), PC Softmax (Hong et al., 2021)
and Balanced Softmax (Ren et al., 2020)) and state-of-the-
art methods for imbalanced node classification, including
GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al.,
2021), ReNode (Chen et al., 2021), and TAM (Song et al.,
2022). Among them, GraphSMOTE and GraphENS are
representative over-sampling methods for node classifica-
tion, and ReNode and TAM are loss function modifica-
tion approaches. For TAM, we test its performances when
combined with different base models, including GraphENS,
ReNode, and Balanced Softmax, following (Song et al.,
2022). The implementation details of baselines are de-
scribed in Appendix D.5.

5.2. Main Results

Experimental Results Under Different Imbalance Ra-
tios. In Table 1 and Table 3, we report the averaged bal-
anced accuracy (bAcc.) and F1 score with standard errors
for the baselines and UNREAL on four class-imbalanced
node classification benchmark datasets under different im-
balance ratios (ρ = 10, 20). The results demonstrate the ad-
vantage of UNREAL. Our method consistently outperforms
existing state-of-the-art approaches across four datasets,
three base models, and two imbalance ratios (except for
GraphSAGE on Amazon-Computers with imbalance ratio
10). In many cases the margin is significant. To evalu-
ate the performance on very skewed label distribution, we
also test in more imbalanced settings (ρ = 50, 100) and
present the results in Table 4 and Table 5 of Appendix B.1.
Similarly, our method outperforms all other methods con-
sistently and often by a notable margin. We remark that
since GraphSMOTE (Zhao et al., 2021) synthesizes nodes
within the minority class, it is not applicable when there
is only one node in some classes, which is the case when
ρ = 20, 50, 100 in our setup.

Experimental Results When Unlabeled Data is Imbal-
anced. We also validate our model on two naturally im-
balanced dataset, Flickr (ρ ≈ 10.8) and Computers-Random
(ρ ≈ 17.7), whose unlabeled data is also imbalanced (See
Table 14). The construction of the training set, validation
set, and testing set is elaborated on Table D. We found that
existing over-sampling methods use too much memory due
to synthetic node generation, and cannot handle Flickr on

forclement
下划线

forclement
下划线
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Table 1. Experimental results of our method UNREAL and other baselines on four class-imbalanced node classification benchmark
datasets with ρ = 10. We report averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on
the GCN architecture.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 62.82 ± 1.43 61.67 ± 1.59 38.72 ± 1.88 28.74 ± 3.21 65.64 ± 1.72 56.97 ± 3.17 80.01 ± 0.71 71.56 ± 0.81
Re-Weight 65.36 ± 1.15 64.97 ± 1.39 44.69 ± 1.78 38.61 ± 2.37 69.06 ± 1.84 64.08 ± 2.97 80.93 ± 1.30 73.99 ± 2.20
PC Softmax 68.04 ± 0.82 67.84 ± 0.81 50.18 ± 0.55 46.14 ± 0.14 72.46 ± 0.80 70.27 ± 0.94 81.54 ± 0.76 73.30 ± 0.51
BalancedSoftmax 69.98 ± 0.58 68.68 ± 0.55 55.52 ± 0.97 53.74 ± 1.42 73.73 ± 0.89 71.53 ± 1.06 81.46 ± 0.74 74.31 ± 0.51
GraphSMOTE 66.39 ± 0.56 65.49 ± 0.93 44.87 ± 1.12 39.20 ± 1.62 67.91 ± 0.64 62.68 ± 1.92 79.48 ± 0.47 72.63 ± 0.76
Renode 67.03 ± 1.41 67.16 ± 1.67 43.47 ± 2.22 37.52 ± 3.10 71.40 ± 1.42 67.27 ± 2.96 81.89 ± 0.77 73.13 ± 1.60
GraphENS 70.89 ± 0.71 70.90 ± 0.81 56.57 ± 0.98 55.29 ± 1.33 72.13 ± 1.04 70.72 ± 1.07 82.40 ± 0.39 74.26 ± 1.05
BalancedSoftmax+TAM 69.94 ± 0.45 69.54 ± 0.47 56.73 ± 0.71 56.15 ± 0.78 74.62 ± 0.97 72.25 ± 1.30 82.36 ± 0.67 72.94 ± 1.43
Renode+TAM 68.26 ± 1.84 68.11 ± 1.97 46.20 ± 1.17 39.96 ± 2.76 72.63 ± 2.03 68.28 ± 3.30 80.36 ± 1.19 72.51 ± 0.68
GraphENS+TAM 71.69 ± 0.36 72.14 ± 0.51 58.01 ± 0.68 56.32 ± 1.03 74.14 ± 1.42 72.42 ± 1.39 81.02 ± 0.99 70.78 ± 1.72

UNREAL 78.33 ± 1.04 76.44 ± 1.06 65.63 ± 1.38 64.94 ± 1.38 75.35 ± 1.41 73.65 ± 1.43 85.08 ± 0.38 75.27 ± 0.23

∆∆∆ +6.64 +4.30 +7.62 +8.62 +1.21 +1.23 +2.68 +0.96

Vanilla 62.33 ± 1.56 61.82 ± 1.84 38.84 ± 1.13 31.25 ± 1.64 64.60 ± 1.64 55.24 ± 2.80 79.04 ± 1.60 70.00 ± 2.50
Re-Weight 66.87 ± 0.97 66.62 ± 1.13 45.47 ± 2.35 40.60 ± 2.98 68.10 ± 2.85 63.76 ± 3.54 80.38 ± 0.66 69.99 ± 0.76
PC Softmax 66.69 ± 0.79 66.04 ± 1.10 50.78 ± 1.66 48.56 ± 2.08 72.88 ± 0.83 71.09 ± 0.89 79.43 ± 0.94 71.33 ± 0.86
BalancedSoftmax 67.89 ± 0.36 67.96 ± 0.41 54.78 ± 1.25 51.83 ± 2.11 72.30 ± 1.20 69.30 ± 1.79 82.02 ± 1.19 72.94 ± 1.54
GraphSMOTE 66.71 ± 0.32 65.01 ± 1.21 45.68 ± 0.93 38.96 ± 0.97 67.43 ± 1.23 61.97 ± 2.54 79.38 ± 1.97 69.76 ± 2.31
Renode 67.33 ± 0.79 68.08 ± 1.16 44.48 ± 2.06 37.93 ± 2.87 69.93 ± 2.10 65.27 ± 2.90 76.01 ± 1.08 66.72 ± 1.42
GraphENS 70.45 ± 1.25 69.87 ± 1.32 51.45 ± 1.28 47.98 ± 2.08 73.15 ± 1.24 71.90 ± 1.03 81.23 ± 0.74 71.23 ± 0.42
BalancedSoftmax+TAM 69.16 ± 0.27 69.39 ± 0.37 56.30 ± 1.25 53.87 ± 1.14 73.50 ± 1.24 71.36 ± 1.99 75.54 ± 2.09 66.69 ± 1.44
Renode+TAM 67.50 ± 0.67 68.06 ± 0.96 45.12 ± 1.41 39.29 ± 1.79 70.66 ± 2.13 66.94 ± 3.54 74.30 ± 1.13 66.13 ± 1.75
GraphENS+TAM 70.15 ± 0.18 70.00 ± 0.40 56.15 ± 1.13 54.31 ± 1.68 73.45 ± 1.07 72.10 ± 0.36 81.07 ± 1.03 71.27 ± 1.98

UNREAL 78.91 ± 0.59 75.99 ± 0.47 64.10 ± 1.49 63.44 ± 1.47 74.68 ± 1.43 72.78 ± 0.89 85.62 ± 0.44 75.34 ± 0.99

∆∆∆ +8.46 +5.99 +7.80 +9.13 +1.23 +0.68 +3.60 +2.40

Vanilla 61.82 ± 0.97 60.97 ± 1.07 43.18 ± 0.52 36.66 ± 1.25 68.68 ± 1.51 64.16 ± 2.38 72.36 ± 2.39 64.32 ± 2.21
Re-Weight 63.94 ± 1.07 63.82 ± 1.30 46.17 ± 1.32 40.13 ± 1.68 69.89 ± 1.60 65.71 ± 2.31 76.08 ± 1.14 65.76 ± 1.40
PC Softmax 65.79 ± 0.70 66.04 ± 0.92 50.66 ± 0.99 47.48 ± 1.66 71.49 ± 0.94 70.23 ± 0.67 74.63 ± 3.01 66.44 ± 4.04
BalancedSoftmax 67.43 ± 0.61 67.66 ± 0.69 51.74 ± 2.32 49.01 ± 3.16 71.36 ± 1.37 69.66 ± 1.81 73.67 ± 1.11 65.23 ± 2.44
GraphSMOTE 61.65 ± 0.34 60.97 ± 0.98 42.73 ± 2.87 35.18 ± 1.75 66.63 ± 0.65 61.97 ± 2.54 71.85 ± 0.98 68.92 ± 0.73
Renode 66.84 ± 1.78 67.08 ± 1.75 48.65 ± 1.37 44.25 ± 2.20 71.37 ± 1.33 67.78 ± 1.38 77.37 ± 0.74 68.42 ± 1.81
GraphENS 68.74 ± 0.46 68.34 ± 0.33 53.51 ± 0.78 51.42 ± 1.19 70.97 ± 0.78 70.00 ± 1.22 82.57 ± 0.50 71.95 ± 0.51
BalancedSoftmax+TAM 69.03 ± 0.92 69.03 ± 0.97 51.93 ± 2.19 48.67 ± 3.25 72.28 ± 1.47 71.02 ± 1.31 77.00 ± 2.93 70.85 ± 2.28
Renode+TAM 67.28 ± 1.11 67.15 ± 1.11 48.39 ± 1.76 43.56 ± 2.31 71.25 ± 1.07 68.69 ± 0.98 74.87 ± 2.25 66.87 ± 2.52
GraphENS+TAM 70.45 ± 0.74 70.40 ± 0.75 54.69 ± 1.12 53.56 ± 1.86 73.61 ± 1.35 72.50 ± 1.58 82.17 ± 0.93 72.46 ± 1.00

UNREAL 75.99 ± 0.98 73.63 ± 1.23 66.45 ± 0.39 65.83 ± 0.30 74.78 ± 1.30 72.80 ± 0.54 83.21 ± 1.50 70.81 ± 1.70

∆∆∆ +5.44 +3.23 +11.76 +12.77 +1.07 +0.30 +0.64 -1.65

Table 2. Experimental results of our method UNREAL and other baselines on Computers-Random. We report averaged balanced accuracy
(bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on three representative GNN architectures.

Dataset (Computers-Random) GCN GAT SAGE

Imbalance Ratio(ρ = 25.50) bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 78.43 ± 0.41 77.14 ± 0.39 71.35 ±1.18 69.60 ± 1.11 65.30 ± 1.07 64.77 ± 1.19
Re-Weight 80.49 ± 0.44 75.07 ± 0.58 71.95 ± 0.80 70.67 ± 0.51 66.50 ± 1.47 66.10 ± 1.46
PC Softmax 81.34 ± 0.55 75.17 ± 0.57 70.56 ± 1.46 67.26 ± 1.48 69.73 ± 0.53 67.03 ± 0.6
BalancedSoftmax 81.39 ± 0.25 74.54 ± 0.64 72.09 ± 0.31 68.38 ± 0.69 73.80 ± 1.06 69.74 ± 0.60
GraphSMOTE 80.50 ± 1.11 73.79 ± 0.14 71.98 ± 0.21 67.98 ± 0.31 72.69 ± 0.82 68.73 ± 1.01
Renode 81.64 ± 0.34 76.87 ± 0.32 72.80 ± 0.94 71.40 ± 0.97 70.94 ± 1.50 70.04 ± 1.16
GraphENS 82.66 ± 0.61 76.55 ± 0.17 75.25 ± 0.85 71.49 ± 0.54 77.64 ± 0.52 72.65 ± 0.53
BalancedSoftmax+TAM 81.64 ± 0.48 75.59 ± 0.83 74.00 ± 0.77 70.72 ± 0.50 73.77 ± 1.26 71.03 ± 0.69
Renode+TAM 80.50 ± 1.11 75.79 ± 0.14 71.98 ± 0.21 70.98 ± 0.31 72.69 ± 0.82 70.73 ± 1.01
GraphENS+TAM 82.83 ± 0.68 76.76 ± 0.39 75.81 ± 0.72 72.62 ± 0.57 78.98 ± 0.60 73.59 ± 0.55

UNREAL 85.32 ± 0.22 80.43 ± 0.56 82.52 ± 0.35 78.90 ± 0.38 75.81 ± 1.86 71.86 ± 1.86

∆∆∆ +2.49 +3.97 +6.71 +6.28 -3.17 -1.73
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a 3090 GPU with 24GB memory. This include GraphENS
(Park et al., 2021), GraphSMOTE (Zhao et al., 2021) and
ReNode (Chen et al., 2021). We present the experimental
results in Table 2 and Table 6. More importantly, on these
two datasets, UNREAL consistently outperforms other ap-
proaches.

5.3. More Experiments and Further Analysis

We conduct more experiments on Cora and Amazon-
Computers to validate our motivations for DPAM in Ap-
pendix C.1. Besides, more novel experiments are targeted
at verifying the effectiveness of DPAM in Appendix C.2).
More experiments are conducted to investigate the varia-
tion of the RBO value (similarity) of the two rankings as
iterations progress in Appendix C.3. More ablation studies
on Node-Reordering are provided in Appendix C.4. The
effectiveness of DGIN is empirically verified in Appendix
C.5). We provide sensitivity analysis on the hyperparameter
k′, which is the number of classes in the K-Means algo-
rithm, and on the threshold γ of DGIN in Appendix C.6.
We conduct additional ablation studies to analyze the benefit
of each component in our method Appendix C.7.

6. Related work
Imbalanced Learning Most real-world data is naturally
imbalanced. The major challenge in imbalanced scenarios
is how to train a fair model which does not biased toward
the majority classes. There are several commonly used ap-
proaches for alleviating this problem. Ensemble learning
(Freund & Schapire, 1997; Liu et al., 2008; Zhou et al.,
2020; Wang et al., 2020a; Liu et al., 2020; Cai et al., 2021)
combines the results of multiple weak classifiers. Data re-
sampling methods (Chawla et al., 2002; Han et al., 2005;
Smith et al., 2014; Sáez et al., 2015; Kang et al., 2019;
Wang et al., 2021a) smooth the label distribution in the
training set by synthesizing or duplicating minority class
samples. A third class of approaches alleviates the imbal-
ance problem by modifying the loss function, which gives
larger weights to minority classes or changes the margins of
different classes (Zhou & Liu, 2005; Tang et al., 2008; Cao
et al., 2019; Tang et al., 2020; Xu et al., 2020; Ren et al.,
2020; Wang et al., 2021b). Methods based on post-hoc cor-
rection compensate minority classes during the inference
step, after model training is complete (Kang et al., 2019;
Tian et al., 2020; Menon et al., 2020; Hong et al., 2021).
Although these techniques have been widely applied on the
i.i.d. data, it is not a trivial task to extend them to graph-
structured data.

Imbalanced Learning in Node Classification Recently,
a series of research (Shi et al., 2020; Wang et al., 2020c;
Zhao et al., 2021; Liu et al., 2021; Qu et al., 2021; Chen

et al., 2021; Park et al., 2021; Song et al., 2022) explicitly
tackle the challenges brought by the topological structures
of graph data when handling imbalanced node classifica-
tion. GraphSMOTE (Zhao et al., 2021) synthesizes minority
nodes in embedding space by interpolating two minority
nodes using the SMOTE (Chawla et al., 2002) algorithm
and infers the neighborhoods of new nodes with link predic-
tion algorithms. ImGAGN (Qu et al., 2021) generates the
features of minority nodes with all of the minority nodes
according to the learned weight matrix and synthesizes the
neighborhoods of new nodes based on weights. (Qu et al.,
2021) only consider binary classification, and it is compu-
tationally expensive to build a generator for each class on
multi-classification tasks. GraphENS (Park et al., 2021)
works for multi-class node classification, which synthesizes
the whole ego network for minority nodes by interpolating
the ego networks of two nodes based on their similarity.
(Chen et al., 2021) identifies topology imbalance as a main
source of difficulty when handling imbalance on node classi-
fication tasks; they propose ReNode, which mitigates topol-
ogy imbalance by adjusting the weights of nodes according
to their distance to class boundaries. TAM (Song et al.,
2022) adjusts the scores of different classes in the Softmax
function based on local topology and label statistics. To
obtain label information of unlabeled nodes, TAM trains the
model using the original imbalanced training set and takes
the model predictions as proxies for ground-truth labels.

Pseudo-labeling Methods in GNNs Recent studies have
just focused on leveraging pseudo-labeling techniques to
train GNNs given limited labeled information. Co-training
(Li et al., 2018), in particular, uses Parwalks (Wu et al.,
2012) to provide confident pseudolabels to help train GNNs,
whereas self-training (Li et al., 2018) expands the label set
by obtaining pseudo-labels provided by previously trained
GNNs. Furthermore, M3S (Sun et al., 2020) employs
a clustering technique to filter out pseudo-labels that do
not match the clustering assignments, thereby improving
pseudo-labeling accuracy.

7. Conclusion
In this work, we observe that selecting unlabeled nodes in-
stead of generating synthetic nodes in oversampling-based
methods for imbalanced node classification is much simpler
and more effective. We propose a novel iterative unlabeled
node selection and retraining framework, which effectively
selects high-quality new samples from the unlabeled sets
to smooth the label distribution of the training set. More-
over, we propose to exploit the geometric structure in the
node embedding space to compensate for the bias in the
model predictions. Extensive experimental results show that
UNREAL consistently outperforms existing state-of-the-art
approaches by large margins.



UNREAL:Unlabeled Nodes Retrieval and Labeling for Heavily-imbalanced Node Classification

References
Cai, J., Wang, Y., and Hwang, J.-N. Ace: Ally comple-

mentary experts for solving long-tailed recognition in
one-shot. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 112–121, 2021.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma,
T. Learning imbalanced datasets with label-distribution-
aware margin loss. Advances in neural information pro-
cessing systems, 32, 2019.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. Smote: synthetic minority over-sampling technique.
Journal of artificial intelligence research, 16:321–357,
2002.

Chen, D., Lin, Y., Zhao, G., Ren, X., Li, P., Zhou, J.,
and Sun, X. Topology-imbalance learning for semi-
supervised node classification. Advances in Neural Infor-
mation Processing Systems, 34:29885–29897, 2021.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Han, H., Wang, W.-Y., and Mao, B.-H. Borderline-smote: a
new over-sampling method in imbalanced data sets learn-
ing. In International conference on intelligent computing,
pp. 878–887. Springer, 2005.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hong, Y., Han, S., Choi, K., Seo, S., Kim, B., and Chang,
B. Disentangling label distribution for long-tailed visual
recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6626–
6636, 2021.

Japkowicz, N. and Stephen, S. The class imbalance problem:
A systematic study. Intelligent data analysis, 6(5):429–
449, 2002.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng,
J., and Kalantidis, Y. Decoupling representation and
classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation
learning, ICML, volume 3, pp. 896, 2013.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI conference on artificial intelligence,
2018.

Liu, X.-Y., Wu, J., and Zhou, Z.-H. Exploratory undersam-
pling for class-imbalance learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2):539–550, 2008.

Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., and He,
Q. Pick and choose: a gnn-based imbalanced learning
approach for fraud detection. In Proceedings of the Web
Conference 2021, pp. 3168–3177, 2021.

Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., and Song,
L. Heterogeneous graph neural networks for malicious
account detection. In Proceedings of the 27th ACM In-
ternational Conference on Information and Knowledge
Management, pp. 2077–2085, 2018.

Liu, Z., Wei, P., Jiang, J., Cao, W., Bian, J., and Chang, Y.
Mesa: boost ensemble imbalanced learning with meta-
sampler. Advances in Neural Information Processing
Systems, 33:14463–14474, 2020.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
arXiv preprint arXiv:2007.07314, 2020.

Mohammadrezaei, M., Shiri, M. E., and Rahmani, A. M.
Identifying fake accounts on social networks based on
graph analysis and classification algorithms. Security and
Communication Networks, 2018, 2018.

Park, J., Song, J., and Yang, E. Graphens: Neighbor-aware
ego network synthesis for class-imbalanced node classifi-
cation. In International Conference on Learning Repre-
sentations, 2021.

Qu, L., Zhu, H., Zheng, R., Shi, Y., and Yin, H. Imgagn:
Imbalanced network embedding via generative adversar-
ial graph networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1390–1398, 2021.

Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al. Bal-
anced meta-softmax for long-tailed visual recognition.
Advances in neural information processing systems, 33:
4175–4186, 2020.



UNREAL:Unlabeled Nodes Retrieval and Labeling for Heavily-imbalanced Node Classification

Sáez, J. A., Luengo, J., Stefanowski, J., and Herrera, F.
Smote–ipf: Addressing the noisy and borderline ex-
amples problem in imbalanced classification by a re-
sampling method with filtering. Information Sciences,
291:184–203, 2015.

Shi, M., Tang, Y., Zhu, X., Wilson, D., and Liu, J. Multi-
class imbalanced graph convolutional network learning.
In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (IJCAI-20), 2020.

Smith, M. R., Martinez, T., and Giraud-Carrier, C. An in-
stance level analysis of data complexity. Machine learn-
ing, 95(2):225–256, 2014.

Song, J., Park, J., and Yang, E. Tam: Topology-aware mar-
gin loss for class-imbalanced node classification. In In-
ternational Conference on Machine Learning, pp. 20369–
20383. PMLR, 2022.

Sun, K., Lin, Z., and Zhu, Z. Multi-stage self-supervised
learning for graph convolutional networks on graphs with
few labeled nodes. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pp. 5892–5899,
2020.

Tang, K., Huang, J., and Zhang, H. Long-tailed classifi-
cation by keeping the good and removing the bad mo-
mentum causal effect. Advances in Neural Information
Processing Systems, 33:1513–1524, 2020.

Tang, Y., Zhang, Y.-Q., Chawla, N. V., and Krasser, S. Svms
modeling for highly imbalanced classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(1):281–288, 2008.

Tian, J., Liu, Y.-C., Glaser, N., Hsu, Y.-C., and Kira, Z. Pos-
terior re-calibration for imbalanced datasets. Advances in
Neural Information Processing Systems, 33:8101–8113,
2020.
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Supplementary Material

A. More Experiments About Imbalanced Learning with Unlabled Data (Section 3)
We provide complete evaluation results on more benchmark datasets for Section 3.1 and Section 3.2, where more basic
models are included in addition to the reported results in the main paper.

A.1. More Experiments for ST Improves the Performance of GNN in Imbalanced Learning (Section 3.1)

Details of Experimental Setup. We chose the three citation datasets, Cora, CiteSeer, and PubMed, to build scenarios with
varying degrees of imbalance. To be more specific, we select half of the classes as minority classes and convert randomly
selected labeled nodes into unlabeled nodes until the training set’s imbalance ratio reaches ρ. We fix architecture as the
2-layer GNN (i.e. GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE (Hamilton et al., 2017)) having
128 hidden dimensions and train models for 2000 epochs. For the ST method, the size of added nodes for each class is a
hyperparameter that we tune based on the validation set’s accuracy. We repeat each experiment five times and report the
average experiment results under different imbalance ratios in Figure 5.

Analysis. More results are presented to confirm the effectiveness of ST in boosting imbalanced learning on Cora, CiteSeer,
and PubMed using three GNN architectures in Figure 5. It can be observed that, across different ratios and data sets, ST
consistently outperforms the vanilla model by a wide margin, confirming the positive value of unlabeled nodes. More
notably, we can discover that ST performs gradually poorly in heavily imbalanced scenarios, especially for Cora and
CiteSeer. In this work, we argue that for highly imbalanced data, ST is unlikely to achieve optimal performance because
classifiers’ biased and untrustworthy predictions may introduce low-quality nodes into the training set early on.
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Figure 5. The experimental results on the three citation datasets under different imbalance scenarios (ρ = 10, 20, 50, 100). We report the
F1-score (%) with the standard errors of Vanilla, ST, and UNREAL.
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Figure 6. Here, we present the experimental results from four benchmark datasets under various imbalance scenarios. We select top 100
unlabeled nodes newly added to the training set via ST & UNREAL, and evaluate the performance of ST & UNREAL based on three
GNN architectures by testing the accuracy with the standard errors of these nodes’ pseudo labels. Minor means that we only test unlabeled
nodes which are selected into the minority classes, and Major means that we only test unlabeled nodes which are selected into the majority
classes.

A.2. More Experiments for Pseudo-label Misjudgment Augmentation Problem in Imbalanced Learning (Section
3.2)

Details of Experimental Setup. Since true labels for all benchmark nodes are provided, we first conduct experiments to
test the accuracy of pseudo labels for unlabeled nodes on class-imbalanced graphs inventively. We select top 100 unlabeled
nodes newly added to the training set through ST & UNREAL, and evaluate the performance of ST & UNREAL by testing
the accuracy (%) with the standard errors of these nodes’ pseudo labels. We test unlabeled nodes that are selected into the
minority classes and unlabeled nodes that are selected into the majority classes separately. We evaluate the performance of
each method on Cora, CiteSeer, PubMed, Amazon-Computers under different imbalance scenarios. We process the datasets
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with a traditional imbalanced distribution following Zhao et al. (2021); Park et al. (2021); Song et al. (2022). The imbalance
ratio ρ between the numbers of the most frequent class and the least frequent class is set as 1 (balanced), 5, 10, 20, 50, 100.
We fix architecture as the 2-layer GNN (i.e. GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE
(Hamilton et al., 2017)) having 128 hidden dimensions and train models for 2000 epochs. The validation accuracy is used to
select the model. Each experiment is repeated five times, and the average experiment results are reported in Figure 6.

Analysis. As shown in Figure 6, in different imbalanced scenarios for ST, the accuracy of the pseudo labels for the
unlabeled nodes selected into the minority classes and the majority classes of the training set are reported. We can see that
as ρ increases, the accuracy of pseudo labels for unlabeled nodes selected into minority classes decreases, implying that the
influence of the classifier’s bias increases. The end results demonstrate a number of intriguing aspects. (1) This means that
the classifier’s pseudo-labels are not credible in a highly imbalanced scenario. More seriously, we want to add unlabeled
nodes whose pseudo-labels are minority classes to the training set, which will cause ST to add excessive noise during the
training process. (2) It’s noteworthy that to evaluate the performance of ST, we only focus on the top 100 nodes which are
pick out based on Confidence Rankings (Section 4.2) from the classifier. So, we believe that even if a node’s pseudo-label is
correct, the classifier’s confidence is skewed, which means that we may include low-quality unlabeled nodes in the training
set while ignoring high-quality unlabeled nodes. This, we believe, is the primary factor of the ST’s poor performance in
imbalanced scenarios. (3) More importantly, regardless of selecting majority class nodes or minority class nodes, UNREAL
consistently outperforms ST. Looking back at Figure 5, it is clear that UNREAL consistently outperforms ST by a wide
margin, and as the imbalance ratio increases, so does the gap in F1 scores between ST and our method.
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B. More Results of Main Experiments (Section 5)
B.1. More Results in Heavily-imbalanced Scenarios

Due to space limitations, we present the complete experimental results here. In Table 3, Table 4, and Table 5, we report the
results in heavily imbalanced scenarios (ρ = 20, 50, 100).

Table 3. Experimental results of our method UNREAL and other baselines on four class-imbalanced node classification benchmark
datasets with ρ = 20. We report averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on
three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 20) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 53.20 ± 0.88 47.81 ± 1.23 35.32 ± 0.15 21.81 ± 0.12 61.13 ± 0.35 46.85 ± 0.76 72.34 ± 2.92 65.42 ± 3.00
Re-Weight 57.51 ± 1.05 54.63 ± 1.08 36.99 ± 1.79 27.33 ± 2.32 66.52 ± 2.42 58.22 ± 3.65 72.45 ± 2.06 65.85 ± 1.46
PC Softmax 61.74 ± 1.50 60.55 ± 1.97 42.53 ± 1.53 36.54 ± 1.13 68.26 ± 1.99 66.54 ± 1.87 73.84 ± 2.64 66.32 ± 2.97
BalancedSoftmax 64.06 ± 0.74 62.88 ± 0.86 47.29 ± 1.29 44.08 ± 1.71 69.71 ± 1.74 68.31 ± 1.71 76.92 ± 2.01 69.86 ± 1.99
Renode 59.40 ± 1.00 56.88 ± 1.52 38.25 ± 1.60 27.61 ± 2.25 67.45 ± 3.34 60.40 ± 5.74 74.15 ± 1.72 67.27 ± 0.92
GraphENS 67.30 ± 1.45 66.82 ± 1.40 46.39 ± 3.48 42.38 ± 4.14 71.37 ± 1.77 69.37 ± 1.69 75.41 ± 1.75 69.32 ± 1.58
BalancedSoftmax+TAM 64.75 ± 0.54 63.46 ± 0.72 48.52 ± 1.62 46.38 ± 1.79 69.95 ± 2.09 68.90 ± 1.86 77.09 ± 2.02 69.86 ± 1.76
Renode+TAM 59.88 ± 1.16 58.05 ± 1.66 41.11 ± 2.45 31.58 ± 2.62 68.53 ± 3.53 64.82 ± 4.32 73.46 ± 1.77 67.50 ± 1.18
GraphENS+TAM 66.94 ± 1.38 66.67 ± 1.42 48.80 ± 2.98 45.06 ± 4.16 71.92 ± 1.58 69.35 ± 1.88 75.78 ± 1.57 68.58 ± 1.78

UNREAL 77.02 ± 0.75 74.15 ± 0.87 55.81 ± 6.11 55.19 ± 6.23 73.06 ± 1.87 70.77 ± 1.96 85.69 ± 0.11 74.81 ± 0.68

∆∆∆ +9.72 +7.33 +7.01 +8.81 +1.14 +1.40 +8.60 +4.95

Vanilla 51.51 ± 0.53 46.59 ± 0.61 34.74 ± 0.16 22.00 ± 0.15 60.22 ± 0.47 46.03 ± 0.70 68.09 ± 2.96 60.08 ± 2.76
Re-Weight 58.68 ± 3.44 55.98 ± 3.97 36.78 ± 0.94 26.63 ± 1.61 63.47 ± 1.73 54.63 ± 3.25 71.44 ± 2.42 62.86 ± 1.94
PC Softmax 59.62 ± 1.41 58.77 ± 1.95 43.38 ± 2.01 37.76 ± 2.12 70.81 ± 1.41 70.25 ± 1.30 71.16 ± 1.15 62.26 ± 0.87
BalancedSoftmax 62.05 ± 1.62 61.14 ± 1.71 47.89 ± 1.25 44.84 ± 1.35 69.91 ± 1.68 67.43 ± 1.73 72.91 ± 1.93 62.79 ± 0.98
Renode 59.52 ± 2.28 57.16 ± 2.47 37.21 ± 2.01 27.09 ± 3.17 64.56 ± 1.65 55.87 ± 2.83 69.34 ± 2.35 59.02 ± 1.67
GraphENS 64.52 ± 2.05 62.52 ± 1.84 43.74 ± 3.81 37.47 ± 4.21 69.00 ± 2.67 65.54 ± 3.54 71.78 ± 2.30 61.83 ± 1.75
BalancedSoftmax+TAM 63.30 ± 0.99 62.81 ± 1.18 49.34 ± 1.29 46.92 ± 1.39 71.17 ± 2.09 68.85 ± 2.90 65.59 ± 2.86 58.12 ± 1.22
Renode+TAM 61.32 ± 2.18 59.19 ± 2.64 39.85 ± 2.20 30.63 ± 2.63 66.28 ± 3.24 58.99 ± 3.04 65.81 ± 2.57 56.73 ± 1.62
GraphENS+TAM 65.78 ± 1.62 63.80 ± 1.79 44.81 ± 2.66 39.47 ± 3.54 70.33 ± 2.33 67.00 ± 3.25 73.55 ± 2.04 64.03 ± 1.32

UNREAL 79.10 ± 0.71 76.21 ± 0.58 55.11 ± 5.00 53.67 ± 5.51 72.54 ± 1.52 70.54 ± 1.91 83.19 ± 0.66 74.39 ± 0.89

∆∆∆ +13.22 +12.41 +6.75 +8.81 +1.37 +1.69 +9.64 +10.36

Vanilla 54.61 ± 1.21 50.95 ± 1.90 37.36 ± 1.03 27.49 ± 1.41 62.04 ± 1.34 54.18 ± 1.73 62.70 ± 2.87 55.39 ± 2.69
Re-Weight 57.37 ± 0.61 55.30 ± 0.72 37.69 ± 1.20 27.92 ± 2.01 65.01 ± 2.69 58.34 ± 2.19 68.31 ± 2.06 60.45 ± 2.40
PC Softmax 59.25 ± 0.74 58.55 ± 0.81 42.77 ± 1.82 40.08 ± 1.82 70.55 ± 1.19 67.60 ± 1.59 70.57 ± 2.86 62.73 ± 2.69
BalancedSoftmax 61.93 ± 1.26 60.89 ± 1.36 43.64 ± 1.33 38.31 ± 1.13 69.89 ± 1.40 68.12 ± 0.78 68.45 ± 2.92 62.12 ± 3.10
Renode 58.48 ± 0.97 55.39 ± 0.94 40.65 ± 2.36 31.78 ± 3.24 66.50 ± 2.63 58.72 ± 4.16 68.36 ± 1.54 61.60 ± 2.00
GraphENS 63.54 ± 0.91 62.20 ± 0.87 44.89 ± 2.51 40.48 ± 2.94 71.37 ± 1.77 69.37 ± 1.69 75.47 ± 2.20 67.49 ± 1.65
BalancedSoftmax+TAM 64.16 ± 0.94 63.63 ± 1.10 44.32 ± 2.36 40.17 ± 2.06 70.06 ± 1.46 69.54 ± 1.35 66.10 ± 2.37 59.22 ± 2.48
Renode+TAM 59.77 ± 2.20 57.98 ± 2.79 42.50 ± 0.93 35.11 ± 1.84 67.31 ± 2.73 60.63 ± 3.49 66.42 ± 2.32 58.62 ± 1.95
GraphENS+TAM 63.39 ± 1.36 61.66 ± 1.53 45.92 ± 1.96 41.97 ± 2.50 69.62 ± 2.57 66.85 ± 3.00 75.75 ± 2.30 68.86 ± 1.29

UNREAL 73.10 ± 1.60 69.92 ± 1.43 58.35 ± 4.58 57.51 ± 4.92 73.67 ± 0.58 71.15 ± 0.67 78.88 ± 2.16 69.00 ± 1.42

∆∆∆ +8.94 +5.69 +12.43 +15.54 +2.30 +1.61 +3.13 +0.14

Analysis. In Table 1, When ρ is 10, UNREAL outperforms other baselines by a wide margin, especially for the datasets
Cora and CiteSeer. For the datasets PubMed and Amazon-Computers, UNREAL can still achieve cutting-edge results in
the majority of cases. However, the improvement is not substantial. This, we believe, is due to the following factors: (1)
For PubMed, because it only has three types of nodes, there is only one minor category in our settings, which means that
the imbalanced scenario is not typical. So in such a mild imbalance setting, each method can still achieve good results.
Nonetheless, UNREAL can still achieve the most advanced performance. (2) For Amazon-Computers, based on prior
experience, we discovered that various models can achieve a good classification effect on this dataset, even if the label
setting is sparse, which is related to the nature of the dataset itself.

In Table 3, Table 4, and Table 5, the results demonstrate several intriguing aspects: (1) The performance gap between other
methods and UNREAL is growing, which means that current methods perform poorly in heavily imbalanced scenarios,
whereas UNREAL can still achieve stable performance. We believe this is because high-quality unlabeled nodes are
compensated into the training set. (2) Existing oversampling methods, such as GraphENS (Park et al., 2021), which achieves
state-of-the-art experimental performance in a slightly imbalanced setting, perform extremely poorly in heavily imbalanced
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scenarios. We contend that the paradigm of synthesizing virtual nodes and local topologies always introduces a significant
amount of redundancy into model training. (3) It is noteworthy that BalanceSoftmax (Ren et al., 2020) achieves superior
results in highly imbalanced scenes. BalancedSoftmax avoids estimation bias caused by label distribution migration in
general.

Table 4. Experimental results of our method UNREAL and other baselines on four class-imbalanced node classification benchmark
datasets with ρ = 50. We report averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on
three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 50) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 51.81 ± 0.62 43.98 ± 1.00 37.59 ± 0.17 23.54 ± 0.13 61.65 ± 0.34 47.95 ± 0.58 77.36 ± 3.41 69.68 ± 3.12
Re-Weight 58.54 ± 2.39 54.13 ± 3.20 38.19 ± 1.28 27.43 ± 2.34 65.70 ± 1.59 56.35 ± 4.26 79.10 ± 2.44 71.40 ± 2.86
PC Softmax 64.87 ± 2.23 62.01 ± 3.14 42.42 ± 2.19 38.83 ± 2.70 69.21 ± 0.59 69.40 ± 0.87 81.90 ± 1.63 74.34 ± 2.13
BalancedSoftmax 65.94 ± 1.55 64.00 ± 2.05 47.62 ± 1.11 46.55 ± 1.46 70.40 ± 1.00 69.04 ± 0.66 82.97 ± 0.83 73.74 ± 1.27
Renode 62.22 ± 1.76 61.18 ± 2.24 41.23 ± 1.66 33.66 ± 2.69 68.67 ± 1.21 63.05 ± 1.47 81.71 ± 0.99 72.55 ± 1.61
GraphENS 63.47 ± 0.98 62.21 ± 1.65 48.17 ± 1.58 41.07 ± 2.34 69.63 ± 2.55 64.30 ± 3.51 81.63 ± 2.35 72.57 ± 2.33
BalancedSoftmax+TAM 68.57 ± 1.58 67.25 ± 1.27 53.43 ± 2.42 51.74 ± 2.80 77.20 ± 1.45 74.86 ± 0.99 81.74 ± 2.30 73.85 ± 2.68
Renode+TAM 63.93 ± 1.96 61.64 ± 2.71 48.17 ± 1.58 41.07 ± 2.34 69.63 ± 2.55 64.30 ± 3.51 80.55 ± 1.75 72.33 ± 1.63
GraphENS+TAM 65.05 ± 1.11 62.11 ± 1.98 45.03 ± 1.34 42.65 ± 1.94 69.74 ± 0.78 70.82 ± 0.63 81.69 ± 2.22 72.09 ± 1.75

UNREAL 75.62 ± 2.02 72.59 ± 2.13 59.97 ± 4.59 58.66 ± 5.20 78.55 ± 0.84 75.91 ± 0.81 85.54 ± 0.26 75.76 ± 0.13

∆∆∆ +7.05 +5.34 +6.54 +6.92 +1.35 +1.06 +2.57 +1.91

Vanilla 53.90 ± 0.63 45.53 ± 0.89 36.48 ± 0.08 23.68 ± 0.16 60.16 ± 0.47 46.99 ± 0.58 72.42 ± 2.17 64.41 ± 2.68
Re-Weight 59.78 ± 1.92 56.69 ± 2.21 38.70 ± 2.23 29.38 ± 3.06 66.27 ± 0.68 57.34 ± 1.41 73.46 ± 3.07 67.00 ± 2.60
PC Softmax 59.44 ± 2.62 58.06 ± 2.69 43.13 ± 1.56 37.04 ± 2.07 70.86 ± 0.44 70.96 ± 0.54 77.21 ± 2.90 69.17 ± 2.89
BalancedSoftmax 64.71 ± 2.28 62.55 ± 2.61 51.89 ± 1.15 49.36 ± 1.52 70.94 ± 1.09 70.33 ± 0.99 77.49 ± 1.58 70.44 ± 2.33
Renode 63.81 ± 1.72 60.63 ± 2.26 41.60 ± 2.30 33.94 ± 4.60 70.35 ± 1.26 67.43 ± 0.01 72.39 ± 2.75 65.23 ± 3.35
GraphENS 64.52 ± 2.51 61.41 ± 3.15 45.23 ± 2.97 41.12 ± 4.23 69.66 ± 1.01 66.83 ± 0.94 78.36 ± 2.74 70.44 ± 2.51
BalancedSoftmax+TAM 68.05 ± 1.03 66.07 ± 1.14 54.28 ± 0.79 52.77 ± 0.97 75.65 ± 1.11 74.02 ± 1.44 78.86 ± 1.53 70.71 ± 2.04
Renode+TAM 64.40 ± 1.83 63.48 ± 2.83 43.54 ± 1.54 35.80 ± 2.43 71.23 ± 2.04 66.61 ± 4.31 76.07 ± 2.70 68.43 ± 2.68
GraphENS+TAM 65.33 ± 2.67 65.34 ± 2.53 48.00 ± 1.46 48.14 ± 1.43 71.50 ± 1.26 72.58 ± 1.07 80.02 ± 2.32 72.38 ± 2.47

UNREAL 77.07 ± 0.83 73.44 ± 1.05 57.70 ± 4.35 56.81 ± 4.67 79.41 ± 0.29 77.38 ± 0.39 86.06 ± 0.45 77.55 ± 0.71

∆∆∆ +9.02 +7.37 +3.42 +4.04 +3.76 +3.36 +6.04 +5.17

Vanilla 53.02 ± 0.83 45.58 ± 1.30 38.81 ± 0.89 25.28 ± 0.51 61.41 ± 1.01 50.46 ± 2.47 56.53 ± 2.12 48.52 ± 2.75
Re-Weight 58.03 ± 0.81 54.32 ± 0.99 38.49 ± 1.34 30.41 ± 1.82 62.41 ± 0.90 51.37 ± 2.62 70.36 ± 2.21 61.52 ± 2.73
PC Softmax 62.33 ± 1.62 59.97 ± 1.98 41.79 ± 1.19 36.90 ± 0.84 69.58 ± 1.09 67.13 ± 0.95 73.53 ± 2.02 66.12 ± 3.19
BalancedSoftmax 64.57 ± 0.77 62.22 ± 0.82 41.84 ± 1.72 40.09 ± 1.04 70.43 ± 0.38 68.99 ± 0.99 73.27 ± 2.30 68.30 ± 1.97
Renode 61.35 ± 1.86 58.88 ± 2.53 40.37 ± 2.33 32.57 ± 3.62 67.54 ± 3.05 59.77 ± 5.30 70.46 ± 3.45 62.30 ± 4.40
GraphENS 63.95 ± 0.96 62.63 ± 2.12 41.99 ± 1.54 37.44 ± 2.43 66.07 ± 1.12 61.63 ± 1.82 76.21 ± 2.84 68.10 ± 2.56
BalancedSoftmax+TAM 65.97 ± 0.71 65.53 ± 0.88 52.89 ± 1.65 49.92 ± 1.83 71.11 ± 0.75 71.73 ± 0.79 73.12 ± 1.41 66.45 ± 1.04
Renode+TAM 62.79 ± 0.47 61.05 ± 0.82 43.04 ± 1.30 36.97 ± 1.92 71.79 ± 1.33 67.80 ± 2.45 74.55 ± 2.95 66.06 ± 2.16
GraphENS+TAM 65.98 ± 1.37 64.84 ± 1.13 49.54 ± 1.79 49.48 ± 1.70 73.24 ± 1.32 73.73 ± 1.14 80.75 ± 1.22 72.31 ± 0.95

UNREAL 76.04 ± 1.30 72.99 ± 1.25 58.70 ± 4.10 57.53 ± 4.59 75.27 ± 1.26 72.16 ± 1.50 82.03 ± 0.77 72.98 ± 0.52

∆∆∆ +10.06 +7.46 +5.81 +7.61 +2.03 -1.57 +1.28 +0.67
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Table 5. Experimental results of our method UNREAL and other baselines on four class-imbalanced node classification benchmark
datasets with ρ = 100. We report averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on
three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 100) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 51.62 ± 0.20 43.91 ± 0.25 38.83 ± 0.26 24.71 ± 0.25 61.28 ± 0.12 47.55 ± 0.16 76.09 ± 3.79 69.32 ± 3.49
Re-Weight 59.11 ± 1.06 54.04 ± 1.36 42.67 ± 2.06 33.17 ± 3.40 67.14 ± 2.71 55.24 ± 5.36 81.53 ± 2.20 71.45 ± 2.05
PC Softmax 63.75 ± 1.02 61.19 ± 1.43 38.34 ± 0.71 33.65 ± 1.42 70.85 ± 0.44 70.26 ± 0.63 82.22 ± 1.99 72.38 ± 2.52
BalancedSoftmax 63.03 ± 1.57 61.28 ± 1.77 48.49 ± 1.20 46.59 ± 1.34 70.77 ± 1.88 68.88 ± 1.74 83.33 ± 3.35 74.34 ± 2.74
Renode 60.76 ± 2.53 58.09 ± 3.00 43.41 ± 2.07 33.69 ± 2.76 67.63 ± 2.77 61.70 ± 4.84 82.13 ± 1.73 71.79 ± 1.85
GraphENS 63.00 ± 1.30 62.33 ± 1.67 45.99 ± 2.06 37.23 ± 3.40 68.65 ± 1.00 62.17 ± 1.60 83.37 ± 2.17 73.96 ± 1.98
BalancedSoftmax+TAM 69.44 ± 0.59 67.10 ± 0.88 52.60 ± 0.69 51.21 ± 0.84 73.73 ± 1.10 73.72 ± 0.83 83.70 ± 2.17 75.39 ± 1.43
Renode+TAM 64.19 ± 1.46 60.90 ± 1.56 44.78 ± 1.51 35.90 ± 2.61 70.53 ± 0.75 64.35 ± 1.79 82.32 ± 2.19 73.09 ± 1.75
GraphENS+TAM 60.40 ± 4.42 57.77 ± 4.02 42.72 ± 2.54 39.40 ± 2.57 70.73 ± 1.96 72.50 ± 1.87 81.29 ± 1.52 71.66 ± 1.75

UNREAL 72.82 ± 3.55 69.12 ± 3.45 57.66 ± 1.96 56.50 ± 1.12 78.73 ± 0.88 76.03 ± 1.08 84.30 ± 0.30 76.06 ± 0.32

∆∆∆ +3.38 +2.02 +5.06 +5.29 +5.00 +2.31 +0.60 +0.67

Vanilla 51.58 ± 0.32 43.37 ± 0.21 37.91 ± 0.28 23.49 ± 0.21 62.07 ± 0.17 47.39 ± 0.20 72.66 ± 2.97 64.87 ± 3.46
Re-Weight 58.28 ± 1.88 54.47 ± 2.35 38.13 ± 1.55 29.60 ± 3.02 67.41 ± 2.69 58.06 ± 5.07 77.10 ± 3.26 68.35 ± 2.71
PC Softmax 63.74 ± 2.01 59.76 ± 2.19 45.07 ± 1.13 39.21 ± 2.29 69.68 ± 1.29 69.44 ± 1.29 79.72 ± 1.52 70.78 ± 1.45
BalancedSoftmax 63.19 ± 1.35 61.03 ± 1.46 46.03 ± 2.11 43.38 ± 2.24 71.45 ± 1.23 69.10 ± 1.20 79.15 ± 2.08 69.68 ± 2.13
Renode 60.04 ± 2.21 58.04 ± 2.66 42.40 ± 2.97 34.09 ± 0.04 68.54 ± 2.11 65.63 ± 3.15 75.34 ± 1.65 69.99 ± 1.60
GraphENS 63.93 ± 2.70 61.77 ± 3.38 44.43 ± 1.90 39.26 ± 2.55 68.50 ± 1.81 64.14 ± 3.28 81.63 ± 2.08 71.20 ± 2.75
BalancedSoftmax+TAM 64.96 ± 3.23 62.91 ± 3.96 52.75 ± 1.29 50.69 ± 1.83 73.38 ± 0.77 72.45 ± 0.88 80.86 ± 2.52 72.93 ± 2.95
Renode+TAM 63.45 ± 1.41 61.51 ± 1.95 41.55 ± 1.39 36.13 ± 2.87 71.53 ± 2.35 68.11 ± 4.28 78.60 ± 1.90 70.35 ± 2.80
GraphENS+TAM 62.52 ± 0.95 61.65 ± 1.19 45.79 ± 1.31 44.80 ± 1.14 69.09 ± 1.11 70.64 ± 1.10 83.33 ± 0.83 72.81 ± 1.22

UNREAL 75.42 ± 0.91 71.50 ± 0.89 60.35 ± 1.87 59.63 ± 1.86 77.88 ± 1.31 74.98 ± 1.35 85.33 ± 0.19 75.83 ± 0.74

∆∆∆ +10.46 +8.59 +7.60 +8.94 +4.50 +2.53 +2.00 +3.02

Vanilla 52.65 ± 0.24 43.79 ± 0.47 36.63 ± 0.09 24.12 ± 0.09 62.29 ± 0.25 47.02 ± 0.38 55.94 ± 2.37 47.21 ± 2.73
Re-Weight 59.42 ± 2.88 55.26 ± 4.40 36.24 ± 1.30 27.07 ± 2.88 63.33 ± 0.75 55.11 ± 1.62 70.76 ± 3.35 62.09 ± 3.30
PC Softmax 64.01 ± 1.15 60.74 ± 1.68 44.74 ± 1.41 37.61 ± 1.69 72.62 ± 1.42 70.95 ± 1.70 75.96 ± 2.44 69.12 ± 2.90
BalancedSoftmax 63.43 ± 2.12 62.30 ± 2.27 49.33 ± 1.12 44.58 ± 1.64 70.68 ± 0.92 69.15 ± 0.84 74.66 ± 0.86 66.28 ± 1.92
Renode 62.42 ± 0.90 60.08 ± 1.19 39.61 ± 2.66 30.13 ± 3.86 67.11 ± 1.12 61.09 ± 3.50 73.73 ± 2.26 64.47 ± 2.39
GraphENS 63.09 ± 0.97 61.20 ± 1.74 42.03 ± 1.88 36.71 ± 2.99 69.71 ± 1.87 63.47 ± 3.87 81.33 ± 1.66 72.83 ± 1.76
BalancedSoftmax+TAM 66.58 ± 1.53 64.56 ± 2.49 53.33 ± 1.06 50.15 ± 1.45 72.59 ± 2.06 72.22 ± 2.08 78.01 ± 1.06 71.02 ± 1.08
Renode+TAM 62.06 ± 2.08 60.72 ± 3.32 42.08 ± 1.88 33.19 ± 3.45 69.95 ± 1.01 65.99 ± 2.28 74.81 ± 3.29 67.48 ± 3.32
GraphENS+TAM 65.95 ± 2.25 63.88 ± 1.78 51.03 ± 1.51 50.49 ± 1.88 73.58 ± 2.01 72.44 ± 1.77 81.72 ± 1.08 72.31 ± 1.98

UNREAL 73.47 ± 2.31 68.30 ± 2.11 59.77 ± 2.98 58.92 ± 3.07 77.11 ± 0.59 74.03 ± 0.81 82.92 ± 2.94 73.11 ± 2.57

∆∆∆ +6.89 +3.74 +6.44 +8.43 +3.53 +1.59 +1.20 +0.28
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B.2. More Results When Unlabeled Data is Imbalanced

In Table 6, we found that existing over-sampling methods use too much memory due to synthetic node generation, and
cannot handle Flickr on a 3090 GPU with 24GB memory. This include GraphENS (Park et al., 2021), GraphSMOTE
(Zhao et al., 2021) and ReNode (Chen et al., 2021). More importantly, on Flickr, UNREAL consistently outperforms other
approaches.

Table 6. Experimental results of our method UNREAL and other baselines on Flickr. We report averaged balanced accuracy (bAcc.,%)
and F1-score (%) with the standard errors over 5 repetitions on three representative GNN architectures.

Dataset (Flickr) GCN GAT SAGE

Imbalance Ratio(ρ ≈ 10.80) bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 24.62 ± 0.07 24.53 ± 0.11 25.87 ±0.30 25.32 ± 0.44 25.29 ± 0.18 24.16 ± 0.27
Re-Weight 28.31 ± 1.64 24.06 ± 1.16 30.66 ± 0.76 27.12 ± 0.34 27.39 ± 1.84 22.62 ± 1.04
PC Softmax 29.21 ± 2.16 25.81 ± 1.75 30.20 ± 0.46 27.24 ± 0.37 25.40 ± 2.49 21.08 ± 1.73
BalancedSoftmax 27.61 ± 0.61 23.70 ± 0.77 26.01 ± 2.81 23.50 ± 3.07 28.24 ± 2.10 24.98 ± 1.59
GraphSMOTE OOM OOM OOM OOM OOM OOM
Renode OOM OOM OOM OOM OOM OOM
GraphENS OOM OOM OOM OOM OOM OOM
BalancedSoftmax+TAM 27.06 ± 1.03 23.97 ± 0.60 28.24 ± 0.99 25.52 ± 0.89 29.79 ± 0.37 27.56 ± 0.25
Renode+TAM OOM OOM OOM OOM OOM OOM
GraphENS+TAM OOM OOM OOM OOM OOM OOM

UNREAL 30.76 ± 0.27 30.60 ± 0.29 29.45 ± 0.72 28.21 ± 0.76 50.68 ± 0.63 51.01 ± 1.34

∆∆∆ +1.55 +4.79 -1.21 +0.97 +20.89 +23.45
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C. More Analysis
C.1. More Experiments of the Motivating Example in Section 4.1.

We conduct richer experiments on Cora and Amazon-Computers based on three different GNN architectures to verify the
motivating example in Section 4.1. We hypothesize that even if the GNN encoder is trained on skewed data, the embeddings
it learns are of high quality.

Details of Experimental Setup. As explained in Section 4.1, we can obtain two pseudo-labels for all unlabeled nodes,
one from unsupervised algorithms and the other from supervised classifiers. Experiments on more datasets are conducted to
compare the accuracy of the two pseudo-labels for all unlabeled nodes. We chose the two benchmark datasets, Cora and
Amazon-Computers, to build scenarios with varying degrees of imbalance (ρ = 1, 5, 10, 20, 50, 100). To be more specific,
half of the classes are designated as minority classes and randomly selected labeled nodes are converted into unlabeled
nodes until the training set’s imbalance ratio reaches rho. The GNN architecture is fixed as the 2-layer GNN (i.e. GCN
(Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE (Hamilton et al., 2017)) having 128 hidden dimensions
and train models for 2000 epochs. We set the K-Means algorithm’s cluster size k′ to 200. Each experiment is repeated five
times, and the average experiment results under different imbalance ratios are shown in Figure 7.
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Figure 7. The partial experimental results on Cora and Amazon-Computers under different imbalance scenarios (ρ = 1, 5, 10, 20, 50, 100).
We compare the accuracy of the two pseudo-labels (predictions) from unsupervised algorithms and supervised classifiers respectively for
all unlabeled nodes.

Analysis. As illustrated by Figure 7, Figure 3(a) and Figure 3(b), the predictions given by unsupervised algorithms still
have a high accuracy rate even in imbalanced scenarios. The final results reveal several intriguing aspects: (1) In imbalanced
scenarios, the performance of both supervised and unsupervised algorithms degrades, especially in extreme cases (ρ =
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50,100). (2) The predictions given by the embedding space are superior to the biased classifier, which meaningfully indicates
that the classifier is the more under-performed component in the model when trained on an imbalanced training set. (3) A
large number of experimental results demonstrate that the predictions from unsupervised algorithms and classifiers are of
reference significance, implying that relying on a single component will not result in a good performance. Motivating by this,
we propose DPAM (Section 4.1) and Node-Reordering (Section 4.2), the two fundamental components of our algorithm.

C.2. Additional Analysis for DPAM (Section 4.1)

DPAM uses an unsupervised algorithm to obtain pseudo-labels for each unlabeled node in the embedding space, and
only unlabeled nodes with aligned pseudo-labels and classifier predictions are put into the candidate pool, effectively
circumventing the classifier’s bias problem, such as selecting low-quality nodes into the training set based on the skewed
confidence rankings. We conduct the novel experiments listed below to see through its essence.

Details of Experimental Setup. We use DPAM to filter the unlabeled nodes of the whole graph, and test the accuracy of
pseudo-labels (prediction of the classifier) of the aligned node set Uin and the discarded node set Uout respectively. DPAM
based on different GNN structures are trained on two node classification benchmark datasets, Cora, and Amazon-Computers.
We process the two datasets with a traditional imbalanced distribution following Zhao et al. (2021); Park et al. (2021); Song
et al. (2022). The imbalance ratio ρ between the numbers of the most frequent class and the least frequent class is set as 1,
5, 10, 20, 50, and 100. We fix architecture as the 2-layer GNN (i.e. GCN(Kipf & Welling, 2016), GAT(Veličković et al.,
2017), GraphSAGE(Hamilton et al., 2017)) having 128 hidden dimensions and train models for 2000 epochs. We select the
model by the validation accuracy. We observe the accuracy of pseudo labels for unlabeled nodes which are filtered out and
absorbed into by DPAM respectively. We repeat each experiment five times and present the average experiment results in
Table 7 and Table 8.

Analysis. DPAM divides the unlabeled nodes of the whole graph into two parts, Uin, Uout. We verify the effect of DPAM
by testing the accuracy of pseudo-labels for these two parts of nodes. We can observe that the accuracy of pseudo-labels
for Uin and Uout differ greatly in different imbalanced scenarios. Usually the pseudo-label accuracy of Uin is high and the
pseudo-label accuracy of Uout is lower, which means the effectiveness of DPAM. We can also observe that as ρ increases,
the accuracy of both decreases, which also reflects the model bias caused by the imbalanced label distribution.

Table 7. Experimental results of DPAM effectiveness on Cora with ρ = 1, 5, 10, 20, 50, 100. We observe the accuracy (%) of the
pseudo-label (prediction of the classifier) of the aligned node set Uin and the discarded node set Uout respectively. We report averaged
results with the standard errors over 5 repetitions on three representative GNN architectures. All, Labeled, Unlabeled represent the size
of whole nodes, labeled nodes, and unlabeled nodes on the graph. Align, Out, Align-True, Out-Ture represent the size of Uin, Uout,
nodes with accurate pseudo-labels of Uin, Uout respectively.

SA
G

E
G

A
T

G
C

N

Dataset All Labled Unlabled Align Align-True Accuracy(%) Out Out-True Accuracy(%)

ρ = 1 2708 140 2568 2072.00 ± 10.29 1391.00 ± 22.56 67.11 ± 1.17 496.00 ± 10.29 233.80 ± 16.66 47.17 ± 3.74
ρ = 5 2708 92 2616 2122.80 ± 18.93 1392.00 ± 34.21 65.58 ± 1.57 493.20 ± 18.73 186.80 ± 13.08 37.86 ± 1.75
ρ = 10 2708 86 2622 2134.60 ± 23.42 1326.40 ± 24.23 62.14 ± 1.67 487.40 ± 23.43 181.60 ± 18.24 37.32 ± 3.13
ρ = 20 2708 83 2625 2149.60 ± 17.67 1310.20 ± 86.72 60.97 ± 3.50 475.40 ± 17.67 169.80 ± 21.47 35.64 ± 3.44
ρ = 50 2708 203 2505 1860.80 ± 31.15 1059.40 ± 58.77 56.90 ± 2.62 644.20 ± 31.14 225.80 ± 10.70 35.05 ± 3.79
ρ = 100 2708 403 2305 1820.40 ± 12.42 1001.60 ± 21.60 55.02 ± 3.99 484.60 ± 23.99 151.40 ± 20.74 31.78 ± 2.37

ρ = 1 2708 140 2568 2072.00 ± 37.18 1412.40 ± 37.31 68.16 ± 1.41 496.00 ± 20.89 239.40 ± 11.37 48.29 ± 2.15
ρ = 5 2708 92 2616 2141.40 ± 26.36 1433.00 ± 59.82 66.90 ± 2.09 474.60 ± 26.36 195.20 ± 24.68 41.02 ± 3.27
ρ = 10 2708 86 2622 2132.60 ± 29.94 1377.40 ± 49.61 64.58 ± 1.60 489.40 ± 29.95 185.80 ± 12.28 37.97 ± 1.13
ρ = 20 2708 83 2625 2150.60 ± 37.35 1344.60 ± 54.17 62.16 ± 1.64 462.40 ± 33.28 178.00 ± 5.05 38.60 ± 2.12
ρ = 50 2708 140 2568 1892.40 ± 37.18 1080.80 ± 31.86 57.52 ± 1.52 612.60 ± 37.17 271.20 ± 6.30 44.35 ± 1.86
ρ = 100 2708 403 2305 1934.60 ± 19.65 1038.20 ± 21.08 53.66 ± 0.83 370.40 ± 37.17 147.53 ± 3.20 39.83 ± 1.36

ρ = 1 2708 140 2568 1944.00 ± 25.77 973.40 ± 32.26 51.27 ± 3.36 624.00 ± 25.77 237.00 ± 13.28 36.11 ± 4.07
ρ = 5 2708 92 2616 2004.40 ± 35.50 1038.20 ± 22.53 51.80 ± 3.73 611.60 ± 35.50 203.80 ± 7.15 33.40 ± 1.85
ρ = 10 2708 86 2622 2041.60 ± 32.48 1039.00 ± 41.32 50.89 ± 1.88 580.40 ± 32.48 189.20 ± 2.35 32.56 ± 4.25
ρ = 20 2708 83 2625 2040.20 ± 30.94 1002.20 ± 66.97 48.95 ± 2.66 578.80 ± 30.95 186.60 ± 18.00 32.18 ± 1.57
ρ = 50 2708 203 2505 1789.40 ± 30.56 870.20 ± 24.33 48.63 ± 1.03 715.60 ± 30.56 242.40 ± 16.77 33.87 ± 1.18
ρ = 100 2708 403 2305 1859.00 ± 192.42 914.41 ± 23.65 49.26 ± 2.59 446.00 ± 21.24 138.87 ± 6.32 31.15 ± 2.43
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Table 8. Experimental results of DPAM effectiveness on Amazon-Computers with ρ = 1, 5, 10, 20, 50, 100.

SA
G

E
G

A
T

G
C

N

Dataset All Labled Unlabled Align Align-True Accuracy(%) Out Out-True Accuracy(%)

ρ = 1 13752 200 13552 11977.60 ± 108.09 9603.80 ± 93.34 80.08 ± 3.07 1554.40 ± 08.23 676.60 ± 141.11 43.58 ± 2.83
ρ = 5 13752 120 13632 11593.60 ± 73.16 9172.80 ± 87.32 79.06 ± 1.17 2308.40 ± 173.54 544.40 ± 66.26 30.74 ± 9.09
ρ = 10 13752 110 13642 11822.40 ± 13.43 8786.60 ± 55.48 74.24 ± 0.83 1807.60 ± 109.34 495.00 ± 100.37 27.24 ± 4.30
ρ = 20 13752 105 13647 11866.60 ± 17.34 8698.20 ± 188.13 73.40 ± 1.39 1780.40 ± 67.36 521.00 ± 60.76 29.20 ± 2.41
ρ = 50 13752 255 13497 11843.20 ± 168.20 8994.40 ± 175.24 75.94 ± 0.75 1653.80 ± 138.11 474.20 ± 50.72 28.68 ± 2.16
ρ = 100 13752 505 13247 9159.00 ± 192.42 7352.90 ± 61.23 81.41 ± 4.59 4088.00 ± 93.99 1129.60 ± 75.74 28.67 ± 4.77

ρ = 1 13752 200 13552 12008.00 ± 101.93 9984.20 ± 308.03 83.44 ± 4.13 1544.80 ± 101.94 580.40 ± 190.49 43.33 ± 1.32
ρ = 5 13752 120 13632 11570.80 ± 136.11 8715.00 ± 86.33 75.33 ± 0.54 2061.20 ± 136.13 477.00 ± 97.07 25.39 ± 1.33
ρ = 10 13752 110 13642 8947.60 ± 13.40 6680.40 ± 177.54 75.85 ± 6.07 4694.40 ± 134.74 591.80 ± 13.74 15.94 ± 2.97
ρ = 20 13752 105 13647 10245.80 ± 68.00 7300.80 ± 64.89 71.42 ± 1.80 3401.20 ± 69.76 370.60 ± 43.87 18.52 ± 0.09
ρ = 50 13752 255 13497 10133.60 ± 31.56 7772.00 ± 155.87 77.17 ± 2.85 3363.40 ± 10.42 457.20 ± 108.19 19.28 ± 1.43
ρ = 100 13752 505 13247 11377.00 ± 63.32 9122.20 ± 96.70 80.46 ± 1.01 1910.00 ± 63.32 458.20 ± 41.04 24.78 ± 2.04

ρ = 1 13752 200 13552 10815.20 ± 86.50 7131.40 ± 72.83 65.94 ± 0.28 2736.80 ± 86.50 965.40 ± 56.42 35.26 ± 1.31
ρ = 5 13752 120 13632 10627.80 ± 78.33 6728.00 ± 53.24 63.25 ± 0.36 3004.20 ± 78.03 978.20 ± 59.93 32.55 ± 1.49
ρ = 10 13752 110 13642 10475.00 ± 118.41 6015.00 ± 41.14 57.43 ± 4.01 3167.00 ± 18.41 1064.40 ± 52.71 33.59 ± 6.23
ρ = 20 13752 105 13647 10653.20 ± 87.35 5998.40 ± 69.35 56.30 ± 4.01 2993.80 ± 87.35 886.20 ± 73.25 29.57 ± 1.77
ρ = 50 13752 255 13497 11044.80 ± 129.14 6760.80 ± 50.26 61.22 ± 3.42 2442.20 ± 28.48 879.00 ± 91.45 35.71 ± 1.78
ρ = 100 13752 505 13247 9175.20 ± 32.53 6475.60 ± 80.88 72.07 ± 1.96 4071.80 ± 32.63 1218.60 ± 14.70 34.43 ± 1.08

C.3. More Results and Analysis about Fluctuation of RBO Values (Section 4.2)

In Section 4.2, we argue that as the iteration progresses, the confidence given by the classifier becomes increasingly
valuable (the training set is gradually balanced), whereas the geometric rankings are calculated in the embedding space
and are unaffected by the classifier. As a result, it is trustworthy that as the credibility of confidence grows in the iterative
process, the similarities between the Confidence Rankings and the Geometric Rankings will gradually increase. Notably, the
unsupervised algorithm performs worse overall than supervised methods, especially for a balanced training set. As a result,
by combining the features of the two rankings, we can greatly improve the performance of our algorithm. Experiments are
used to put the aforementioned hypothesis to the test.
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Figure 8. Fluctuation of RBO values (ρ = 10) of two rankings as iterations progress.

Details of Experimental Setup. We conduct more experiments on Cora (ρ = 10) to observe the similarities between the
Geometric Rankings and Confidence Rankings. The architecture is fixed as the 2-layer GNN (i.e. GCN(Kipf & Welling,
2016), GAT(Veličković et al., 2017), GraphSAGE(Hamilton et al., 2017)) having 128 hidden dimensions and train models
for 2000 epochs. The UNREAL model’s hyperparameter settings can be found in Appendix D.4. We choose a majority and
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a minority class at random to compare the similarities of their respective two rankings (our setting is the first class and the
last class of Cora), and we limit the number of iterations to eight. Each experiment is repeated five times, and the average
experiment results are reported in Figure 3(c), Figure 3(d), and Figure 8.

Analysis. As illustrated by Figure 3(c), Figure 3(d) and Figure 8, it can be observed that the similarities between the
Confidence Rankings and the Geometric Rankings will gradually increase as the iteration progresses in the early stages.
As a result, our hypothesis is confirmed. It is worth noting that the similarity of the two rankings of the minority class is
higher than the majority class when the training set is gradually balanced, which also reflects the compensation benefit of
UNREAL for the minority class.

C.4. Additional Analysis for Node-Reordering (Section 4.2)

In this section, we analyze why Node-Reordering works. With DPAM, we filter out a large part of untrustworthy nodes and
get a pool of candidate nodes. We try to carefully hunt for a part of high-quality nodes in the pool to add to the training set,
which involves a priority issue. As we mentioned before, we have already verified in Section 3.2 that the prediction and
confidence given by the classifier are biased, resulting in low accuracy of the pseudo-labels for nodes selected by ST in
highly imbalanced scenarios. We can get the geometric ranking according to the distance between the unlabeled nodes and
the class centers in the embedding space. Considering the influence of classifier bias on confidence ranking, we believe that
geometric ranking is more credible in the early rounds. At the same time, we take into account the suboptimal nature of the
unsupervised algorithm. We believe that with the rounds of UNREAL increases, the label distribution of the training set is
gradually balanced, and the confidence given by the classifier is more reliable. Node-reordering considers both geometric
ranking and confidence ranking, specifically, obtaining the similarity between them to get a weight to reorder the priority of
the nodes. To quantify the performance of Node-Reordering, we conduct the novel experiments below.

Details of Experimental Setup. We conduct experiments to test the accuracy of pseudo labels for unlabeled nodes on
class-imbalanced graphs. All model combinations based on different GNN structures are trained on two node classification
benchmark datasets, Cora, and Amaon-Computers. We process the two datasets with a traditional imbalanced distribution
following Zhao et al. (2021); Park et al. (2021); Song et al. (2022). The imbalance ratio ρ between the numbers of the
most frequent class and the least frequent class is set as 1, 5, 10, 20, 50, and 100. We fix architecture as the 2-layer GNN
(i.e. GCN(Kipf & Welling, 2016), GAT(Veličković et al., 2017), GraphSAGE(Hamilton et al., 2017)) having 128 hidden
dimensions and train models for 2000 epochs. We select the model by the validation accuracy. We observe the accuracy of
pseudo labels for unlabeled nodes which are newly added to the minority class of the training set. We repeat each experiment
five times and present the average experiment results in Table 9 and Table 10.

Analysis. As shown in Table 9 and Table 10, we verify the effectiveness of each component of UNREAL by testing
the accuracy of the nodes’ pseudo-labels selected by different model combinations, DPAM+Confidence ranking(with or
without DGIN), DPAM+Geometric ranking(with or without DGIN), DPAM+Node-Reordering(with or without DGIN). It
can be observed that in different imbalanced scenarios, each component of UNREAL (Node-reordering & DGIN) plays an
important role, and the performance outperforms the other model combinations significantly.

C.5. Additional Analysis for GI and DGIN (Section 4.3)

In this section, We elaborate on the issue, Geometric Imbalance and verify the effectiveness of DGIN.

Geometric Imbalance. As the prior work Song et al. (2022); Chen et al. (2021) argued, too many labeled nodes remaining
near the boundary between two classes will have a significant impact on GNN classification performance. In our work, we
try to select some unlabeled nodes to join the training set, which means that nodes near the center of the classes (far from
any class boundaries) should be prioritized. Node-Reordering has made some efforts in this part (Section 4.2). Considering
that UNREAL iteratively selects nodes to join the training set (Section 4.4), some suboptimal nodes (not so close to class
centers) are gradually considered in later stages, which is referred to as Geometric Imbalance (GI). We generalize the novel
Geometric Imbalance to have the following properties: (1) Only unlabeled nodes suffer from GI, and this is the first work
to investigate the local topology of unlabeled nodes in the imbalanced node classification problem. (2) Geometrically
imbalanced nodes are on class boundaries and are frequently indistinguishable. (3) For unlabeled nodes that encounter GI,
DPAM often encounters the conflict of pseudo-labeling. This is because these nodes in the embedding space are roughly the
same distance apart from the two class centers.
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Table 9. Analyzed experimental results of Node-Reordering and DGIN on Cora with ρ = 1, 5, 10, 20, 50, 100. We select 100 unlabeled
nodes newly added to the minority class of training set through different method combinations, and evaluate the validity of Node-
Reordering & DGIN by testing the accuracy (%) with the standard errors of the pseudo labels for these nodes. We report averaged results
over 5 repetitions on three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora

Imbalance Ratio (ρ) ρ = 1 ρ = 5 ρ = 10 ρ = 20 ρ = 50 ρ = 100

DPAM+Confidence Ranking 61.40 ± 2.73 62.40 ± 2.59 60.20 ± 1.02 58.40 ± 1.05 57.60 ± 1.86 58.40 ± 2.15
DPAM+Geometric Ranking 64.00 ± 3.67 61.20 ± 2.89 61.20 ± 2.54 63.60 ± 1.31 55.60 ± 2.31 47.80 ± 2.87
DPAM+Node-Reordering 89.65 ± 3.23 86.98 ± 0.21 88.32 ± 0.83 85.32 ± 2.98 90.87 ± 2.31 71.60 ± 2.91
DPAM+Confidence Ranking+DGIN 71.00 ± 5.47 75.40 ± 2.15 68.20 ± 1.25 69.40 ± 1.28 67.80 ± 2.75 66.60 ± 0.16
DPAM+Geometric Ranking+DGIN 69.60 ± 3.78 73.80 ± 0.45 64.80 ± 1.26 64.20 ± 1.91 57.00 ± 1.57 69.00 ± 1.71
DPAM+Node-Reordering+DGIN(UNREAL) 92.80 ± 1.30 96.40 ± 4.27 92.20 ± 0.85 89.40 ± 1.37 93.00 ± 0.82 77.80 ± 2.50

DPAM+Confidence Ranking 61.60 ± 4.26 64.00 ± 2.07 62.60 ± 3.47 57.80 ± 1.65 58.20 ± 1.07 60.60 ± 0.79
DPAM+Geometric Ranking 64.00 ± 2.78 67.80 ± 3.76 65.00 ± 4.30 52.00 ± 1.02 65.20 ± 2.58 40.80 ± 2.63
DPAM+Node-Reordering 91.79 ± 0.23 90.45 ± 5.78 84.32 ± 3.45 88.34 ± 0.23 90.32 ± 0.43 75.34 ± 1.54
DPAM+Confidence Ranking+DGIN 69.80 ± 2.77 72.80 ± 3.94 72.40 ± 1.13 67.60 ± 1.59 71.60 ± 9.12 64.00 ± 1.74
DPAM+Geometric Ranking+DGIN 73.60 ± 4.82 74.00 ± 5.47 68.40 ± 1.62 57.20 ± 2.17 68.00 ± 1.17 62.00 ± 1.53
DPAM+Node-Reordering+DGIN(UNREAL) 93.80 ± 1.92 91.20 ± 4.60 90.40 ± 1.69 90.00 ± 9.92 94.60 ± 4.92 78.20 ± 2.47

DPAM+Confidence Ranking 54.80 ± 4.96 53.00 ± 2.46 51.80 ± 1.97 43.60 ± 2.57 46.20 ± 0.53 41.60 ± 1.14
DPAM+Geometric Ranking 53.60 ± 2.78 45.40 ± 1.75 40.60 ± 0.26 52.60 ± 2.47 47.40 ± 4.27 44.80 ± 2.84
DPAM+Node-Reordering 90.69 ± 0.21 86.90 ± 0.56 86.45 ± 3.21 88.34 ± 2.43 75.34 ± 4.20 76.43 ± 1.43
DPAM+Confidence Ranking+DGIN 66.20 ± 5.78 59.00 ± 3.04 63.80 ± 1.52 54.60 ± 1.64 60.60 ± 1.37 57.40 ± 2.26
DPAM+Geometric Ranking+DGIN 61.60 ± 3.71 61.80 ± 5.21 54.00 ± 7.31 53.60 ± 1.38 63.00 ± 1.23 45.20 ± 1.96
DPAM+Node-Reordering+DGIN(UNREAL) 97.80 ± 1.78 92.20 ± 1.32 90.80 ± 1.82 89.20 ± 1.39 94.20 ± 8.04 85.40 ± 1.02

Table 10. Analyzed experimental results of Node-Reordering and DGIN on Amazon-Computers with ρ = 1, 5, 10, 20, 50, 100. We
select 100 unlabeled nodes newly added to the minority class of training set through different method combinations, and evaluate the
validity of Node-Reordering & DGIN by testing the accuracy (%) with the standard errors of the pseudo labels for these nodes. We report
averaged results over 5 repetitions on three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Amazon-Computers

Imbalance Ratio (ρ) ρ = 1 ρ = 5 ρ = 10 ρ = 20 ρ = 50 ρ = 100

DPAM+Confidence Ranking 75.40 ± 2.50 70.20 ± 3.03 74.88 ± 3.11 68.20 ± 4.20 63.60 ± 2.30 61.40 ± 1.51
DPAM+Geometric Ranking 76.00 ± 1.41 74.80 ± 4.71 76.80 ± 2.28 65.80 ± 3.27 64.80 ± 3.70 65.60 ± 3.98
DPAM+Node-Reordering 82.80 ± 2.38 79.60 ± 3.64 78.20 ± 0.26 74.00 ± 3.28 65.20 ± 1.87 66.00 ± 2.82
DPAM+Confidence Ranking+DGIN 76.40 ± 2.07 67.20 ± 4.32 75.80 ± 2.38 66.20 ± 3.70 62.80 ± 0.12 59.20 ± 1.30
DPAM+Geometric Ranking+DGIN 78.20 ± 0.83 80.00 ± 1.22 76.40 ± 1.67 66.00 ± 2.44 64.20 ± 3.83 66.20 ± 2.38
DPAM+Node-Reordering+DGIN(UNREAL) 84.40 ± 3.60 82.20 ± 2.16 80.40 ± 3.46 80.60 ± 1.51 69.60 ± 3.04 66.40 ± 3.20

DPAM+Confidence Ranking 84.60 ± 2.40 79.20 ± 1.78 73.00 ± 2.12 74.80 ± 2.16 65.00 ± 1.73 68.60 ± 1.40
DPAM+Geometric Ranking 86.00 ± 3.80 79.80 ± 2.94 74.80 ± 3.42 75.00 ± 2.91 70.80 ± 2.16 69.40 ± 1.10
DPAM+Node-Reordering 87.40 ± 2.30 80.60 ± 3.04 80.40 ± 2.19 79.00 ± 3.67 75.00 ± 1.22 73.40 ± 2.52
DPAM+Confidence Ranking+DGIN 84.20 ± 1.64 79.40 ± 2.07 76.40 ± 6.50 76.00 ± 2.34 66.00 ± 0.12 72.00 ± 1.84
DPAM+Geometric Ranking+DGIN 83.80 ± 1.09 80.20 ± 1.09 76.20 ± 2.28 77.80 ± 2.58 71.60 ± 0.89 69.00 ± 1.16
DPAM+Node-Reordering+DGIN(UNREAL) 89.00 ± 2.54 86.60 ± 2.50 85.60 ± 4.44 83.40 ± 3.31 78.00 ± 3.39 79.80 ± 3.03

DPAM+Confidence Ranking 85.20 ± 3.38 80.20 ± 6.26 84.8 ± 0.83 77.60 ± 0.89 61.00 ± 0.70 65.40 ± 2.65
DPAM+Geometric Ranking 86.00 ± 0.70 81.20 ± 2.16 83.40 ± 1.14 78.00 ± 1.22 61.40 ± 0.54 65.00 ± 1.72
DPAM+Node-Reordering 86.00 ± 1.58 83.20 ± 3.27 84.60 ± 0.54 79.20 ± 1.92 61.80 ± 0.44 67.80 ± 1.03
DPAM+Confidence Ranking+DGIN 86.40 ± 2.07 81.60 ± 3.20 83.40 ± 1.14 79.20 ± 0.44 61.20 ± 0.44 70.40 ± 3.59
DPAM+Geometric Ranking+DGIN 87.00 ± 2.12 80.80 ± 2.48 84.20 ± 1.30 78.20 ± 1.48 61.20 ± 0.47 68.20 ± 1.72
DPAM+Node-Reordering+DGIN(UNREAL) 88.20 ± 2.16 87.60 ± 1.14 85.40 ± 4.72 78.00 ± 1.55 66.20 ± 2.86 72.20 ± 0.83

Motivating Example For GI. Here, we conduct a novel experiment on Cora (ρ = 10) to verify the necessity of the GI
issue. We choose two adjacent classes (our setting is the first and last classes of Cora) at random in the embedding space and
examine only the nodes with pseudo-labels that belong to these two classes (these nodes were previously filtered by DPAM),
and we divide the category boundaries of the two classes into five regions, S1, S2, S3, S4, S5. We independently validate the
pseudo-label accuracy of unlabeled nodes in each region. The architecture is fixed as the 2-layer GCN(Kipf & Welling,
2016) having 128 hidden dimensions and train models for 2000 epochs. Each experiment is repeated five times, and the
average experiment results are reported in Figure 10(b). The diagram of the motivating example is Figure 10(a).
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(b) Sensitivity performance of the threshold γ of DGI

Figure 9. Sensitivity analysis on Cora based on GCN. The two images show the performance change as clusters’ size k′ of K-Means and
the threshold γ of DGI increases respectively.

Table 11. Ablation analysis on different components

Modules Confidence ranking Geometric ranking Node-reordering DGI F1

Cora+GCN (ρ = 10)

73.93 ± 0.95
72.74 ± 0.63
75.85 ± 0.82
75.34 ± 0.63
75.00 ± 0.97
76.44 ± 1.06

CiteSeer+SAGE (ρ = 20)

46.09 ± 4.08
47.76 ± 1.06
50.32 ± 3.75
53.32 ± 3.75
58.71± 3.21
57.51 ± 4.92

PubMed+GAT (ρ = 50)

76.34 ± 0.39
75.42 ± 0.39
77.32 ± 0.21
76.89 ± 1.43
76.12 ± 2.63
77.38 ± 0.39

Computers+GAT (ρ = 100)

70.86 ± 1.73
68.86 ± 1.42
72.32 ± 2.43
73.65 ± 0.67
74.03 ± 2.53
75.83 ± 0.74
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(b) Accuracy of pseudo-labels for unlabeled nodes per region.

Figure 10. (a) We visualize the motivating example’s intent. The setting is to divide the distance between the class centers into five equal
parts and then evenly divide the class boundaries. (b) Accuracy of pseudo-labels for unlabeled nodes per region..

Analysis. In Figure 10(b), the result reveals several intriguing aspects: (1) Unlabeled nodes near the classification boundary
are vulnerable to GI issues, and the specific performance is that the correctness of pseudo-labels is extremely low. (2)
Geometric Ranking has a high reference significance for selecting high-quality nodes. The closer the unlabeled node is
to the center of the class, the higher its pseudo-label accuracy. (3) Including these geometrically imbalanced nodes in the
training set will introduce a lot of noise into the model training, so a simple and effective method to deal with this issue is
desperately needed. Based on this, we propose DGIN. Looking back at the rich analysis experiments, Table 9 and Table 10
in Appendix C.4, it can be observed that DGIN plays an important role in various imbalanced scenarios, and its performance
significantly outperforms the other model combinations, which validates DGIN’s effectiveness in dealing with GI issues and
contributes to the model’s overall performance.

C.6. Hyperparameter Sensitivity Analysis of UNREAL

We investigate the sensitivity of performance to clusters’ size k′ of the K-Means algorithm and the threshold γ of DGIN in
Figure 9. We observe the performance gradually stabilizes when k′ has extremely high values, on the other hand, when k′ is
extremely low values, the performance of UNREAL drops largely. We believe that when k′ is too small, the pseudo-labels
given by unsupervised algorithms will have more errors. Also, we observe the performance gradually stabilizes when γ
has extremely low values. We believe this is because the DGIN screening is too strict, which will lead to the loss of some
high-quality nodes. On the other hand, extremely large γ will introduce much noise into the training set.

C.7. Ablation Analysis

In this section, we conduct ablation studies to analyze the benefit of each component in our method. From the results in
Section 3.2, the necessity of unsupervised learning in the embedding space has been verified. Thus, in this section, DPAM is
applied in all comparing methods. Here, we test the performance of three different ranking methods, namely confidence
ranking, geometric ranking, and Node-reordering (which combines the former two rankings with information retrieval
techniques). Moreover, we test the effect of DGIN, which aims to eliminate geometrically imbalanced nodes. As shown in
Table 11, each component of our method can bring performance improvements. In particular, in three out of four settings in
the table, Node-Reordering+DGIN achieves the best F1 scores. In all cases, geometric ranking outperforms confidence
ranking, proving our hypothesis that prediction confidence scores may contain bias and be less reliable.
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D. Details of the experimental setup
Here, we introduce the method of imbalanced datasets construction, evaluation protocol, and the details of our algorithm
and baseline methods.

D.1. Imbalanced datasets construction

Table 12. Summary of the datasets used in our experiments.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 491,722 767 10
Flickr 89,250 899,756 500 7

The detailed descriptions of the datasets are shown in Table 12. For each citation dataset, for ρ = 10, 20, we follow the
“public” split, and randomly convert minority class nodes to unlabeled nodes until the dataset reaches an imbalanced ratio ρ.
For ρ = 50, 100, since there are not enough nodes per class in the public split training set, we choose randomly selected
nodes as training samples, and for validation and test sets we still follow the public split. For the co-purchased networks
Amazon-Computers, we randomly select nodes as training set in each replicated experiment, construct a random validation
set with 30 nodes in each class and treat the remaining nodes as the testing set. For Flickr, we follow the dataset split from
Zeng et al. (2019). For Computers-Random, we build a training set of equal proportions based on the label distribution of
the entire graph (Amazon-Computers). The label distribution in the training set for Computers-Random is summarized in
Table 13. The details of label distribution in the training set of the five imbalanced benchmark datasets are in Table 13, and
the label distribution of the full graph is provided in Table 14.

D.2. Details of GNNs

We evaluate our method with three classic GNN architectures, namely GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017), and GraphSAGE (Hamilton et al., 2017). GNN consists of L = 1, 2, 3 layers, and each GNN layer is followed by a
BatchNorm layer (momentum=0.99) and a PRelu activation (He et al., 2015). For GAT, we adopt multi-head attention with
8 heads. We search for the best model on the validation set. The choices of the hidden unit size for each layer are 64, 128,
and 256.

D.3. Evaluation Protocol

We adopt Adam (Kingma & Ba, 2014) optimizer with an initial learning rate of 0.01 or 0.005. We follow (Song et al., 2022)
to devise a scheduler, which cuts the learning rate by half if there is no decrease in validation loss for 100 consecutive
epochs. All learnable parameters in the model adopt weight decay with a rate of 0.0005. For the first training iteration, we
train the model for 200 epochs using the original training set for Cora, CiteSeer, PubMed, or Amazon-Computers. For
Flickr, we train for 2000 epochs in the first iteration. We train models for 2000 epochs in the rest of the iteration with the
above optimizer and scheduler. The best models are selected based on validation accuracy. Early stopping is used with
patience set to 300.

D.4. Implementation details

In UNREAL, we employ the vanilla K-means algorithm as the unsupervised clustering method. The number of clusters K
is chosen from {100, 300, 500, 700, 900} for Cora, CiteSeer, PubMed, and Amaon-Computers. For Flickr, K is selected
among {1000, 2000, 3000, 5000}. For Cora, CiteSeer, PubMed, and Amazon-Computers, the number of training round T
are tuned among {40, 60, 80, 100}. For Flickr, T is tuned among {40, 50, 60, 70}. We also introduce a hyperparameter α,
which is the upper bound on the number of nodes being added per class per round. The tuning range of α is {4, 6, 8, 10}
for Cora, CiteSeer, Amazon-Computers and {64, 72, 80} for PubMed. For Flickr the value of α is selected among
{30, 40, 50, 60}. The weight parameters p in RBO is selected among {0.5, 0.75, 0.98}, and the threshold in DGIN is tuned
among {0.25, 0.5, 0.75, 1.00}. For Flickr, we only add minority nodes to the training set in all iterations, which means that
we set α = 0 for majority classes in Flickr.
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Table 13. Label distributions in the training sets
Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Cora (ρ = 10) 20
(23.26%)

20
(23.26%)

20
(23.26%)

20
(23.26%)

2
(23.26%)

2
(23.26%)

2
(23.26%) - - -

Cora (ρ = 20) 20
(24.10%)

20
(24.10%)

20
(24.10%)

20
(24.10%)

1
(1.19%)

1
(1.19%)

1
(1.19%) - - -

Cora (ρ = 50) 50
(24.63%)

50
(24.63%)

50
(24.63%)

50
(24.63%)

1
(0.49%)

1
(0.49%)

1
(0.49%) - - -

Cora (ρ = 100) 100
(24.81%)

100
(24.81%)

100
(24.81%)

100
(24.81%)

1
(0.25%)

1
(0.25%)

1
(0.25%) - - -

CiteSeer (ρ = 10) 20
(30.30%)

20
(30.30%)

20
(30.30%)

2
(30.30%)

2
(3.03%)

2
(3.03%) - - - -

CiteSeer (ρ = 20) 20
(31.75%)

20
(31.75%)

20
(31.75%)

1
(1.59%)

1
(1.59%)

1
(1.59%) - - - -

CiteSeer (ρ = 50) 50
(32.68%)

50
(32.68%)

50
(32.68%)

1
(0.65%)

1
(0.65%)

1
(0.65%) - - - -

CiteSeer (ρ = 100) 100
(33.00%)

100
(33.00%)

100
(33.00%)

1
(0.33%)

1
(0.33%)

1
(0.33%) - - - -

PubMed (ρ = 10) 20
(47.62%)

20
(47.62%)

2
(4.76%) - - - - - - -

PubMed (ρ = 20) 20
(48.78%)

20
(48.78%)

1
(2.44%) - - - - - - -

PubMed (ρ = 50) 50
(49.50%)

50
(49.50%)

1
(0.99%) - - - - - - -

PubMed (ρ = 100) 100
(49.75%)

100
(49.75%)

1
(0.50%) - - - - - - -

Amazon-Computers (ρ = 10) 20
(18.18%)

20
(18.18%)

20
(18.18%)

20
(18.18%)

20
(18.18%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

Amzon-Computers (ρ = 20) 20
(19.05%)

20
(19.05%)

20
(19.05%)

20
(19.05%)

20
(19.05%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

Amzon-Computers (ρ = 50) 50
(19.61%)

50
(19.61%)

50
(19.61%)

50
(19.61%)

50
(19.61%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

Amzon-Computers (ρ = 100) 100
(19.80%)

100
(19.80%)

100
(19.80%)

100
(19.80%)

100
(19.80%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

Computers-Random (ρ = 25.50) 4
(3.01%)

21
(15.79%)

14
(10.53%)

5
(3.76%)

51
(38.35%)

3
(2.26%)

4
(3.01%)

8
(6.02%)

21
(15.79%)

2
(1.50%)

Flickr (ρ ≈ 10.80) 2628
(5.89%)

4321
(9.68%)

3164
(7.09%)

2431
(5.45%)

11525
(25.83%)

1742
(3.90%)

18814
(42.16%) - - -

Table 14. Label distributions on the whole graphs

Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
Cora (ρ ≈ 4.54) 351 217 418 818 426 298 180 - - -
CiteSeer (ρ ≈ 2.66) 264 590 668 701 696 508 - - - -
PubMed (ρ ≈ 1.91) 4103 7739 7835 - - - - - - -
Amazon-Computers (ρ ≈ 17.73) 436 2142 1414 542 5158 308 487 818 2156 291
Flickr (ρ ≈ 10.84) 5264 8506 6413 4903 22966 3479 37719 - - -
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D.5. Baselines

For GraphSMOTE (Zhao et al., 2021), we use the branched algorithms whose edge predictions are discrete-valued, which
have achieved superior performance over other variants in most experiments. For the ReNode method (Chen et al., 2021),
we search hyperparameters among lower bound of cosine annealing wmin ∈ {0.25, 0.5, 0.75} and upper bound of the cosine
annealing wmax ∈ {1.25, 1.5, 1.75} following Chen et al. (2021). PageRank teleport probability is fixed as α = 0.15, which
is the default setting in the released codes. For TAM (Song et al., 2022), we search the best hyperparameters among the
coefficient of ACM term α ∈ {1.25, 1.5, 1.75}, the coefficient of ADM term β ∈ {0.125, 0.25, 0.5}, and the minimum
temperature of class-wise temperature φ ∈ {0.8, 1.2} following Song et al. (2022). The sensitivity to imbalance ratio of
class-wise temperature δ is fixed as 0.4 for all main experiments. Following (Song et al., 2022), we adopt a warmup for 5
iterations since we utilize model prediction for unlabeled nodes.

D.6. Configuration

All the algorithms and models are implemented in Python and PyTorch Geometric. Experiments are conducted on a server
with an NVIDIA 3090 GPU (24 GB memory) and an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz.
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E. Algorithm

Algorithm 1 UNREAL
Input: Imbalanced dataset (G = (V, E ,L0), y), feature matrix X , adjacency matrix A, unlabeled set U = V − L0, rounds

T to select nodes, the size threshold α of nodes being added in each class per round, weight hyperparameter p of RBO,
threshold γ of DGIN, learning rate η, the size k′ of the clusters, GNN model fg, clustering algorithm fcluster, and the
mean function M(·).

1: for i = 0 to round T do
2: Train fg based on the current training set Li := {C1, · · · , Ck}.
3: Obtain node embedding matrix of the labeled node set and unlabeled node setHL ∈ R|L|×d,HU ∈ R|U|×d, prediction

ŷ and confidence r from the classifier.
4: % Step 1: Dual Pseudo-tag Alignment Mechanism(DPAM)
5: fcluster(H

U ) =⇒ {K1, c1,K2, c2, · · · ,Kk′ , ck′}
6: ctrain

i = M({hLu | yu ∈ Ci})
7: Assign a label ỹm to each cluster Km: ỹm = arg minj distance(c

train
j , cm).

8: Combine clusters with the same pseudo-label m as Ũm, and U =
⋃k
m=1 Ũm.

9: Put unlabeled nodes whose prediction in ŷ is m into the set Um, and U =
⋃k
m=1 Um.

10: % Step 2: Node-Reordering
11: For each u ∈ Ũm ∩ Um: δu = distance (hLu , c

train
m ).

12: Obtain geometric rankings {S1,S2, · · · ,Sk} based on δ; and confidence rankings {T1, T2, · · · , Tk} based on r.
13: For each m, NNew

m = max{rm, 1− rm} · Sm + min{rm, 1− rm} · Tm.
14: Select nodes based on the rank of their values in NNew

m .
15: % Step 3:Discarding Geometrically Imbalanced Nodes (DGIN)
16: Obtain the distance between the embedding of u and the second closest center to u as βu, compute GI index of node

u as βu−δu
δu

.
17: if βu−δu

δu
<γ then

18: Discard node u.
19: else
20: Select it to the training set.
21: end if
22: Update the training set Li.
23: end for
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F. Notation

Table 15. Elaborated notation table of this paper.

Indices
n The number of nodes,|V|.
f The node feature dimension.
k The number of different classes.
k′ The number of cluster centers in the embedding space.
d The dimension of the embedding space, or the dimension of the last layer of GNNs.
T Rounds to select nodes
Parameters
G An undirected and unweighted graph.
V The node set of G.
E The edge set of G.
X The feature matrix of G, X ∈ Rn×f .
L The set of labeled nodes of G.
A The adjacency matrix of G, A ∈ {0, 1}n×n.
N (v) The set of 1-hop neighbors for node v.
U The set of unlabeled nodes, U = V − L.
Ci The i class of the labeled sets.
ρ Imbalance ratio of a dataset, ρ := maxi(|Ci|)

mini(|Ci|)
.

hl
v The feature of node v in the l-th layer.
ev,u The edge weight between v and u.
Φl The parameter matrix of the l-th layer.
HL The embedding matrix of labeled nodes, HL ∈ R|L|×d.
HU The embedding matrix of unlabeled nodes, HU ∈ R|U|×d.
hL
u The embedding of a node u, if u ∈ L.
hU
u The embedding of a node u, if u ∈ U .
Ki The i-th cluster.
ci The i-th cluster center,the center of cluster i-th .
ỹi The pseudo-label of the cluster Ki.
Ũm The combination of clusters with the same pseudo-label m.
ŷu The prediction of node u in U given by GNN model.
Um The combination of unlabeled nodes whose prediction given by the GNN model is m.

Z The pool of candidate nodes after DPAM, Z =
k⋃

i=m

(Ũm ∩ Um).

ctrain
m The class center of class m in the embedding space.
Si The sorted lists of geometric rankings.
Ti The sorted lists of confidence rankings.
rm The similarity between two rankings, rm = RBO(Sm, Tm).
δu The distance between the embedding of u and the closest class center to u.
βu The distance between the embedding of u and the second closest class center to u.
γ Threshold of DGI.
p Weight hyperparameter of RBO.
α The size threshold of nodes being added in each class per round.
η Learning rate of GNN model.
Functions.
ml The message function of MPNNs.
θl The information aggregation function.
ψl The node feature update function.
fcluster An unsupervised clustering algorithm for the embedding space.
M(·) The mean function.
fg GNN model.


